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VS.

The	person	sharpened	the	knife	in	the	kitchen.
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We	want	to	model	this	dependency.
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(a)	Sentence	Generator

(b)	Paragraph	Generator

Framework
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Visual	Features

Object	appearance:	
VGG-16	(fc7)	[Simonyan et	al.,	2015],	pre-trained	on	ImageNet	dataset

Action:	
C3D	(fc6)	[Tran et	al.,	2015],	pre-trained	on	Sports-1M	dataset
Dense	Trajectories+Fisher Vector	[Wang	et	al.,	2011]

Video	Feature	Pool

Appearance	Feature	Pool

Action	Feature	Pool
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Attention	Model

Learning	spatial	&	temporal	attention	simultaneously

Weighted	Average

Video	Feature	Pool

512

Recurrent	I
Attention	 I

Attention	 II

Sequential	Softmax

06/13



Attention	Model Weighted	Average

Video	Feature	Pool

512

Recurrent	I
Attention	 I

Attention	 II

Sequential	Softmax

06/13



Attention	Model Weighted	Average

Video	Feature	Pool

512

Recurrent	I
Attention	 I

Attention	 II

Sequential	Softmax

06/13



Attention	Model Weighted	Average

Video	Feature	Pool

512

Recurrent	I
Attention	 I

Attention	 II

Sequential	Softmax

06/13

… …ii-1 i+1feature	pool



Attention	Model Weighted	Average

Video	Feature	Pool

512

Recurrent	I
Attention	 I

Attention	 II

Sequential	Softmax

06/13

… …

t-1

ii-1 i+1feature	pool

previous	 recurrent	state



Attention	Model Weighted	Average

Video	Feature	Pool

512

Recurrent	I
Attention	 I

Attention	 II

Sequential	Softmax

06/13

… …

… …

t-1

ii-1 i+1feature	pool

previous	 recurrent	state

attention	weights



Attention	Model Weighted	Average
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… …

t-1

ii-1 i+1feature	pool

previous	 recurrent	state

attention	weights

dot	product average	feature

(input	 to	multimodal	layer)
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Experiments	- Setup
Two	datasets:

YouTube2Text	
>	open-domain
>	1,970	videos,	~80k	video-sentence	pairs,	12k	unique	words
>	only	one	sentence	for	a	video	(special	 case)

TACoS-MultiLevel
>	closed-domain:	cooking
>	173	videos,	16,145	intervals,	~40k	interval-sentence	pairs,	2k	unique	words
>	several	dependent	sentences	for	a	video

Three	evaluation	metrics:
BLEU																		[Papineni et	al.,	2002]
METEOR												[Banerjee	and	Lavie,	2005]
CIDEr [Vedantam et	al.,	2015]

The	higher,	 the	better.
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Evaluation	metric	scores	are	not	always	
reliable,	we	need	further	comparison.
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RNN-cat	vs.	h-RNN
RNN-cat

flat	structure,	concatenating	sentences	directly	with	one	RNN
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RNN-sent	vs.	h-RNN	examples
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Conclusions	&	Discussions

Hierarchical	RNN	improves	paragraph	generation
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Conclusions	&	Discussions

Hierarchical	RNN	improves	paragraph	generation

Issues:
1. Most	errors	occur	when	generating	nouns;	small	objects	hard	

to	recognize	(on	TACoS-MultiLevel)

2. One-way	information	flow

3. Language	model	helps,	but	sometimes	overrides	computer	
vision	result	in	a	wrong	way
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