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Problem

Our	approach	stacks	a	paragraph	generator	on	top	of	a	sentence	generator.	The	sentence	
generator	is	built	upon:
1) a	Recurrent	Neural	Network	(RNN)	for	language	modeling,
2) a	multimodal	layer	for	integrating	information	from	different	sources,	and	
3) an	attention	model	for	selectively	focusing	on	the	input	video	features.	

Why	generating	a	paragraph?	
Using	only	one	short	sentence	to	describe	a	
semantically	rich	video	usually	yields	uninformative	
and	even	boring	results.	For	example,	instead	of	
saying	“the	person	sliced	the	potatoes,	cut	the	
onions	into	pieces,	put	the	onions	and	potatoes	into	
the	pot,	and	turned	on	the	stove”,	a	method	that	is	
only	able	to	produce	one	short	sentence	would	
probably	say	“the	person	is	preparing	food”.
The	idea
We	want	to	explicitly	model	the	temporal	
dependency	 among	sentences	for	multi-sentence	
generation.	The	generation	of	one	sentence	is	
affected	by	the	semantic	context	given	by	previous	
sentences.	 For	example,	in	a	video	of	cooking	dishes,	
a	sentence	“the	person	peeled	the	potatoes”	is	more	
likely	to	occur,	than	“the	person	turned	on	the	stove”,	
after	“the	person	took	out	some	potatoes”.

Figure	2.	Our	hierarchical	RNN	for	video	captioning.	Green denotes	the	input	to	the	framework,	blue denotes	the	
output,	and	red	denotes	the	recurrent	components.	The	orange arrow	represents	the	reinitializationof	the	sentence	
generator	with	the	current	paragraph	state.	
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We	evaluate	on	two	benchmark	datasets:	YouTubeClips [1]	and	TACoS-MultiLevel [2].	
The	YouTubeClips dataset	contains	1,967	short	videos	with	80,839	sentences	 in	total.	The	
TACoS-MultiLevel dataset	contains	185	long	videos	with	52,478	sentences	 in	total.	We	
employ	three	different	evaluation	metrics:	BLEU,	METEOR,	and	CIDEr.

The	person	opened	the	drawer.
The	person	took	out	a	pot.
The	person	went	to	the	sink.
The	person	washed	the	pot.
The	person	turned	on	the	stove.

The	person	peeled	the	fruit.
The	person	put	the	fruit	in	the	bowl.
The	person	sliced	the	orange.
The	person	put	the	pieces	in	the	plate.
The	person	rinsed	the	plate	in	the	sink.

Figure	4. Examples	of	our	generated	sentences.	The	video	frames	are	cropped	around	the	person	
only	for	better	visualization.

Approach Experiment	results

A	dog	is	playing	in	a	bowl.

A	man	is	pouring	oil	into	a	pot.
Figure	1.	Only	one	sentence	is	generated	for	a	videowith	few	
details.

Figure	3.	Left	column:	four	examples	of	our	learned	
sentence	embeddings.	Each	512	dimensional	
embedding	is	drawn	as	a	red	curve.	Right	column:	
the	Euclidean	distance	between	every	two	
embeddings.	A	small	distance	indicates	that	two	
sentences	have	similar	meanings.	Notice	how	(a)	and	
(b)	are	similar	to	each	other	due	to	sharing	common	
keywords.	Also	note	that	even	though	(c)	and	(d)	are	
quite	different	literally,	our	framework	learns	similar	
semantics	for	them	from	the	video	features.

YouTubeClips TACoS-MultiLevel

LSTM-E	[3] Our	Method LRCN	[4] RNN-cat Our	Method

BLEU@4 0.453 0.604 0.292 0.297 0.305

METEOR 0.310 0.326 0.282 0.284 0.287

CIDEr N/A 0.658 1.534 1.555 1.602


