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Abstract

Proxemics is the study of how people interact. We
present a computational formulation of visual proxemics by
attempting to label each pair of people in an image with a
subset of physically based “touch codes.” A baseline ap-
proach would be to first perform pose estimation and then
detect the touch codes based on the estimated joint loca-
tions. We found that this sequential approach does not per-
form well because pose estimation step is too unreliable for
images of interacting people, due to difficulties with occlu-
sion and limb ambiguities. Instead, we propose a direct
approach where we build an articulated model tuned for
each touch code. Each such model contains two people,
connected in an appropriate manner for the touch code in
question. We fit this model to the image and then base clas-
sification on the fitting error. Experiments show that this
approach significantly outperforms the sequential baseline
as well as other related approches.

1. Introduction
People interact in interesting ways; Figure 1 shows a few

images of two people interacting. Even a seemingly sim-
ple interaction such as two people holding hands exhibits
a large amount of variability. See Figures 1(g)-(j). An-
thropological research on understanding interpersonal be-
havior can be traced back to the pioneering works of Hall
[9, 10] and Argyle and Foss [1]. In his seminal work [9],
Hall coined the term Proxemics for this field of study.

Inspired by these anthropological papers, we present a
computational theory of proxemics. This area of research
is relatively unexplored in computer vision, often limited to
the use of video [16]. To the best of our knowledge, we
are the first to study this topic in the context of consumer
photographs. Besides the scientific motivation, proxemics
has a number of applications. Most notably, in the area of
personal photo organization we may wish to find all pho-
tographs of two specific people holding hands, hugging, etc.

Hall [9] defines interactions types as an unknown
“function” over combinations of various factors including

(a) Hand-hand (b) Shoulder-shoulder (c) Hand-shoulder

(d) Hand-elbow (e) Elbow-shoulder (f) Hand-torso

(g) (h) (i) (j)

Figure 1: People interact in a wide variety of different ways.
(a)-(f) The six specific touch codes that we study in this pa-
per. (g)-(j) An illustration of the wide variation in appear-
ance for the hand-hand proxemic. (g) Also illustrates that
multiple touch codes may appear at the same time.

postural-sex identifiers, sociofugal - sociopetal orientation,
kinesthetic factors and temporally measured touch codes.
Many of these factors are often not measurable in static
photographs, and there is no existing approach to combine
them, computationally. Hence, we took a pragmatic ap-
proach and characterized proxemics as the problem of rec-
ognizing how people physically touch each other. This en-
abled us to enumerate the types of interactions, which we
call touch codes. (In this paper, we use the terms touch
code and proxemics interchangeably.) We define touch
codes1 as the pairs of body parts (each element of the pair
comes from a different person) that are in physical contact.

1An alternative way to formulate the problem might have been to define
proxemics classes for “hugging,” “holding a baby,” “holding hands,” etc.
We explored this option, however, found the labeling process to be far more
subjective than labeling our physically based touch codes.
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Through an annotation study conducted over a large collec-
tion of images from multiple sources (see Section 2), we
identified that there are six dominant touch codes, namely,
hand-hand, hand-shoulder, shoulder-shoulder, hand-elbow,
elbow-shoulder, and hand-torso. Figures 1(a)-(f) show ex-
ample images corresponding to each of these touch codes.

It is often the case that the same two people can exhibit
multiple touch codes, simultaneously. For instance, in Fig-
ure 1(g), the two people are engaged in, both, hand-hand
and hand-shoulder. Hence, for each pair of people, prox-
emics recognition amounts to correctly identifying the cor-
rect subset of touch codes that they exhibit.

The problem we address in this paper is touch code
recognition. Since touch codes reflect body parts in phys-
ical contacts, it is natural to use pose estimation algo-
rithms for touch code recognition. However, it is difficult
[4, 18] to reliably estimate pose when there are multiple
people interacting due to various factors such as occlusion,
body part ambiguities, etc. Another approach may be to
forego pose estimation altogether, and simply train differ-
ent visual templates tuned for each proxemic interaction.
The difficulty here is that a single touch code can exhibit
large variability due to articulation. Instead, we propose a
joint approach that simultaneously recognizes touch codes
(and hence proxemics) and estimates multi-body articulated
pose. We show this joint approach produces significantly
better results for both proxemic recognition and pose esti-
mation, and is far superior to approaches that apply these
steps sequentially or apply non-articulated templates.

Our main contributions are:

• We introduce the problem of image-based proxemics
recognition to computer vision and provide a compu-
tational grounding of Hall’s work.

• We have created a new dataset, fully annotated with
joint positions and touch code labels.

• We propose a joint model of body pose estimation and
proxemics touch codes recognition that enables each
of these tasks to help each other. We show experimen-
tal results that supports that joint estimation provides
a richer model for not only proxemics recognition but
also provides better body pose estimation.

1.1. Related Work

The focus of our work is modeling the physical contact
between two people as they interact in a single image. To
the best of our knowledge, we are the first to study this prob-
lem in a systematic manner. Human interactions are one
component of human activity recognition. While activity
recognition in single images is an active area, most activi-
ties studied involve a single person [21, 13]. In particular,
Yang et al [22] use articulated poses an intermediate repre-
sentation for image-based action recognition.

Past work has analyzed people interacting in video. Of-
ten this is motivated from a surveillance perspective, fo-
cusing on events such as pick-pocketing and package ex-
changes [12]. Recent work has applied contextual models
to the problem of recognizing group activities [2, 15, 11].
Most related to us is [16], who analyze people interactions
in commercial content such as TV shows and movies. We
differ in our focus on static image analysis, and so cannot
make use of such temporal models.

Another related area is the modeling of human-object re-
lationships. Gupta et al [8] and Yang and Fei Fei [24] an-
alyze interactions between people and objects. Body pose
plays a crucial role in such data, but is difficult to estimate
because of occlusion due to the interacting object. While
one could apply such techniques to our problem by treating
the second human as just another object, a second articu-
lated body considerably complicates analysis due to addi-
tional occlusions, etc. Moreover, while object interactions
tend to be functionally defined, proxemic interactions are
defined in part by culturally-dependant social norms [10].

The “Visual Phrase” technique [19] is closely related to
our approach. It is argued in [19] that complex visual in-
teractions, such as a person riding a horse, are better mod-
eled as a single phenomenon rather than two separate ob-
jects. Such person-object composites are typically fed into a
weakly-supervised recognition system [6]. We empirically
demonstrate that multi-body articulation requires additional
supervision and precise encoding of spatial structure.

We argue that directly modeling the interaction between
two people is more practical than an approach that first es-
timates the pose of each independently, particularly when
there are severe occlusions and body part ambiguities.
While there has been much work on articulated pose estima-
tion (see the survey in [18]) including methods that jointly
estimate poses of multiple people [4], our joint approach is
more robust.

2. Proxemics Dataset
There is huge variation in how people interact. One ap-

proach to assigning labels to these interactions is through
phrases that correspond to abstract concepts such as “arm
around shoulder”, “hugging”, “holding hands”, “holding
a baby,” etc. However, these concepts are very subjec-
tive. For instance, it is hard to distinguish a “hug” from an
“arm around shoulder”. In fact, our first set of annotations
based on this approach had poor inter-annotator agreement.
Hence, a better approach, and the one we use in this paper
is an objective labeling scheme that relies on body parts.
In particular, we define interactions through “touch codes”,
where each touch code is a pair of body parts (each from a
different person) that are physically in contact.

We restrict attention to the upper body where the interac-
tions in personal photographs most commonly occur. There



(a) Image Statistics
No. Images No. People No. People Pairs

589 1207 1332

(b) Touch Code Statistics
Hand touch hand 340 25.5%
Hand touch shoulder 180 13.5%
Shoulder touch shoulder 210 15.8%
Hand touch elbow 96 7.2%
Elbow touch shoulder 106 8.0%
Hand touch torso 57 4.3%

(c) Co-occurrence Statistics
0 Codes 1 Code 2 Codes 3+ Codes

531 626 162 13

Figure 2: Statistics of our proxemics dataset. The data orig-
inates from a combination of personal photo collections and
web searches. We labeled all possible body part pair touch
codes. However, the occurrence frequency drops off rapidly
and so we restrict attention to the top 6 codes. Between any
pair of people, there maybe any number of touch codes. In
most cases, there are 0 or just 1, however there are a signif-
icant number of cases with 2 or more touch codes.

are at least 5 major parts of the upper body (head, shoulders,
elbows, hands, torso). With these parts, there are 5×5 = 25
possible ways that they can touch. See Section 3.2.1 for a
description of how we handle the fact that each person has
two shoulders, elbows, and hands.

We empirically explored the occurrence of these 25
touch codes in real photographs. We collected a large num-
ber of images consisting of personal photos of family and
friends, and data assembled through a set of web-searches
on Flickr, Getty Images and image searches on Google and
Bing. For web searches, we used abstract concepts (de-
scribed above) that are indicative of interactions as the key
words to search on. In Figure 2(a), we present some basic
statistics of the collected data. An image with n people can
potentially create n(n− 1)/2 pairs of people. As shown in
Figure 2(a), on average, most images tend to have only 2
people in them. For each image in this collection, and for
all people in the image, we labeled their body joint loca-
tions. Then, for each pair of people, we labeled all possible
touch codes between pairs of body-parts. Figure 2(b) shows
the frequency of occurrence of the touch codes. We can see
that the frequency drops rapidly and is dominated by a small
number of codes. We restricted our analysis to the top six
codes. Next, we studied the co-occurrence of multiple touch
codes between pairs of people. Figure 2(c) shows the statis-
tics. While most pairs of people have 0 or 1 touch codes,
there are a significant number of cases where there are 2 or
more touch codes. For example, the elbow and hand of a
single arm may both touch another person’s body.

(a) Extreme Pose (b) Occlusion (c) Part Ambiguity

Figure 3: An illustration of why current articulated pose es-
timation algorithms such as [23] perform poorly on images
containing two or more people interacting. The most com-
mon problems are: (a) extreme poses, (b) occlusion, and
(c) body part ambiguity (for example, the algorithm may
successfully fit an arm in the model to an arm in the image,
but it may be the wrong person’s arm.)

3. Algorithms
We first describe a simple baseline sequential approach

for performing proxemic recognition. The approach is
based on using the outputs of pose estimation to perform
recognition. We then present our joint approach which
jointly models the estimation and proxemic recognition.

3.1. Baseline: Sequential Algorithm

A natural baseline is to first perform pose estimation and
then use a measure of the distance between the appropri-
ate body parts to identify the touch code. To perform pose
estimation we use the “flexible mixture of parts” algorithm
[23] which has shown state-of-the-art performance on vari-
ous pose estimation benchmarks, and for which public code
is available. The output of this algorithm is a set of 2D body
part locations:

{LiHe, RiHe, LiSh, RiSh, LiEl, RiEl, LiHa, RiHa, LiTo, RiTo},

where i = 1, 2 is the index of the person, the subscript de-
notes the body part (He = head, Sh = shoulder, El = elbow,
Ha = hand, To = torso), and R denotes the 2D image loca-
tion of the right body part and L the location of the left.

In the second step, we compute the distance between the
appropriate body parts. For notational simplicity in the def-
inition of the distance below, we duplicate the head and
torso locations into the LiHe = RiHe and LiTo = RiTo
parameters. The distance between body parts p1, p2 ∈
{He, Sh,El,Ha, To} is:

Dist(p1, p2) = min
M,N∈{L,R}

‖M1
p1 −N2

p2‖. (1)

where distances are measured with respect to the average
body scale, as given by the average size of both faces. We
then perform classification using a simple threshold on this
distance.

The performance of this algorithm is heavily dependent
on the pose estimation. Unfortunately, existing pose estima-
tion algorithms perform poorly on images containing two or



Figure 4: Our model for the hand-hand proxemic is a pic-
torial structure [6] consisting of two people plus a spring
connecting their hands, shown here as a HOG template [3].

more people interacting because of the difficulties caused
by extreme poses, occlusion and ambiguity of body parts.
Figure 3 shows illustrative examples that depict the failure
modes when [23] was used for pose estimation. We present
quantitive results for such a baseline approach in our exper-
imental results (Sec. 4.2).

3.2. Joint Estimation of Proxemics and Pose

We now propose a joint model for jointly recognizing
proxemic classes and pose estimation for pairs of people.
An illustration of our model for the hand-hand proxemic
is included in Figure 4. The model is a pictoral structure
[6] consisting of two people plus a spring connecting their
hands. Suppose we have two people, each represented as a
set of parts:

V = {head1, neck1, left shoulder1, . . . , (2)
head2, neck2, left shoulder2, . . .}

where the subscript denotes whether the part is for person
1 or person 2. We then formulate a part-based model simi-
lar to the one in [23], which models articulated body limbs
using local mixtures of small, translating parts. We initially
write out the equations for a single mixture model, but later
explain how they can be generalized to multiple mixtures.

Let li = (xi, yi) be the pixel location of part i. Given an
image I , we score a collection of parts L = {li : i ∈ V } as:

S(I, L) =
∑
i∈V

αi · φ(I, li) +
∑
ij∈E

βij · ψ(li − lj) (3)

where φ(I, li) is a feature vector (e.g., HOG descriptor [3])
extracted from pixel location li in image I . The first sum
in Equation (3) is an appearance model that computes the
local score of placing a template αi for part i at location
li. We write ψ(li − lj) =

[
dx dx2 dy dy2

]T
, where

dx = xi−xj and dy = yi− yj , the relative location of part
i with respect to j. The second term is a deformation model

that controls the relative placement of part i and j. It can
be interpreted as a spring, where the parameters βij specify
the rest location and rigidity of the spring connecting part i
and j. Finally, we write G = (V,E) for a K-node graph
which specifies which pairs of parts are constrained to have
consistent spatial relations. When G is a tree, one can use
dynamic programming algorithms to compute the best pose
in an image L∗ = argmaxL S(I, L) [7].

To capture articulation of body parts, we follow the ap-
proach of [23] and model limbs using small parts centered
at joints and their midpoints. We extend part domains to
include position and orientation (xi, yi, θi), where θi is a
discrete variable that captures one of six orientation states.
We augment Equation (3) to include orientation-dependant
appearance models αθii and orientation dependant springs
β
θi,θj
ij , and append a constant term to the pairwise feature
ψ(li − lj) to allow the model to favor particular pairs of
orientations (θi, θj) over others.

To enable the use dynamic programming for inference,
we need the edge structure E to be a tree. Each person on
their own can be naturally modeled as a tree. So long as we
only connect one part from the first person to the second, the
two-person model remains a tree. We simply add a single
spring to the two parts which are touching as specified by
the proxemic touch code. As shown in Figure 4, a hand-
hand model will contain a spring connecting the two hands.
A hand-shoulder model will contain a spring connecting the
hand and shoulder, etc. For a finite set of proxemic models
parameterized by the discrete variable p ∈ {1 . . .K}, we
can combine the models into a single joint model over both
proxemics and pose:

S(I, L, p) =
∑
i∈Vp

αpi · φ(I, li) +
∑
ij∈Ep

βpij · ψ(li − lj).

(4)

where Vp ⊆ V is the set of parts modeled in proxemic p,
Ep ⊆ V is the set of edges/springs for proxemic p, and βpij
is the spring parameter connecting pars i and j for proxemic
p. The 6 components of our model, one for each touch code,
are illustrated in Figure 5.

While Equation (4) captures our model, there are a few
details that we also encode:

Proxemic-Dependant Structure: Not every body part is
essential to every proxemic. For example, in a hand-
hand interaction, only one hand from each person is in
contact. The other arms and legs are not so important
and are better not modeled because their components
of the fitting energy only add noise. We therefore allow
the set of parts modeled to depend on the proxemic
being modeled. As an illustration, in Figure 5(a), we
show how the other arms and legs can be dropped in
the hand-hand proxemic. In Equation (4), this detail
appears in the use of Vp rather than V .



(a) Hand-Hand (b) Shoulder-Shoulder (c) Hand-Shoulder (d) Hand-Elbow (e) Elbow-Shoulder (f) Hand-Torso

Figure 5: Illustration of the tree-structure of our proxemic-specific model in Equation (4). It is not important to consider the
legs and other arms/torso parts to predict the proxemics. We crop out those regions out and build a chain connecting from
one person’s head to the other person’s head through the touching body parts.

Proxemic-Dependant Geometry: The pose of a person
depends on the proxemic; a person with a hand on
a shoulder is posed different than a person holding
hands. Hence it is natural to make the spring defor-
mation parameters βpij and the set of edges Ep depend
on the proxemic interaction p.

Proxemic-Dependant Appearance: One crucial aspect of
interactions is occlusion. Consider the hand-shoulder
interaction in Figure 5(c); the arm of the hugging per-
son is almost always occluded. One option is to drop
occluded parts from the proxemic-specific graph Vp,
however this would break the graph into two disjoint
components, eliminating any geometric constraint be-
tween the two people. Another solution is to keep oc-
cluded parts in Vp, but force their associated appear-
ance template βpi to be zero, ensuring that no image
evidence is scored. We take the view that one can
simply define a proxemic-dependant appearance which
may or may not be zero (depending upon what param-
eters from learned from training data). Figure 5(c) sug-
gests that we learn templates that looks for characteris-
tic gradient features associated with partially occluded
arms.

3.2.1 Proxemic Sub-Categories

Even a single proxemic category can be visually quite var-
ied. One cause of this variation is the complexity arising
from left/right ambiguities. For example, consider two peo-
ple standing next to one another engaged in a hand-hand in-
teraction. They look very different if the touching hands are
facing each other, or on opposite sides of the body. See Fig-
ure 6 for an illustration. To resolve such issues we create a
number of sub-categories for each proxemic class, obtained
by considering all appropriate left/right permutations.

In particular, we augment the proxemic label with a mix-

(a) Left left (b) Left right (c) Right left (d) Right right

Figure 6: As each person has two arms, we use four sub-
models to capture the different hand-hand appearances.

ture component, replacing p with p′ = (p,m) in Equa-
tion (4), where m ∈ {1 . . . 4}. Given an image I , the fi-
nal score associated with a particular proxemic label p is a
maximum score over all poses L and mixturesm associated
with that proxemic:

S(I, p) = max
m

[
max
L

S(I, L, p,m)
]

(5)

where the inner maximization is performed with dynamic
programming, and the outer maximization is performed
with a discrete search over the 4 mixture models. For hand-
touch-torso and shoulder-touch-shoulder models, we only
use 2 mixtures because the torso does not contain a left/right
variant, and left-left (or right-right) shoulder touches are un-
common.

3.2.2 Learning

We assume a supervised learning paradigm, where we are
given image of pairs of people with ground-truth part la-
bels, proxemic labels, and proxemic sub-category labels
{In, Ln, pn,mn}. We define a structured prediction ob-
jective function similar to the one proposed in [23]. We
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(a) Using ground truth head locations (b) Using face detection to identifying head location

Figure 7: Comparison between our proposed Joint algorithm, the Sequential algorithm (Section 3.1), and the Visual Phrase
algorithm [19]. In (a) we use the ground-truth head positions. In (b) we use the faces obtained using a face detector. Our
algorithm gives a very significant improvement in average precision in both cases, and across all six touch codes.

write Z = (L,m) and note that the scoring function in
Equation (4) is linear in the part appearance models and
spring parameters wp = {αp, βp}. This means we can
write S(I, Z, p) = wp · Φ(I, Z). We train a binary one-
vs-all classifier for each p using positive examples of class
and negative examples of all other classes:

arg min
wp,ξi≥0

1

2
wp · wp + C

∑
n

ξn (6)

s.t. ∀n ∈ pos wp · Φ(In, Zn) ≥ 1− ξn
∀n ∈ neg,∀Z wp · Φ(In, Z) ≤ −1 + ξn

The above constraint states that positive examples should
score better than 1 (the margin), while negative examples,
for all configurations of parts and mixtures, should score
less than -1. The above optimization is a quadratic program
(QP), and specifically an instance of a structural SVM [14],
for which many solvers exist. We use the dual coordinate-
descent QP solver in [23]. When selecting a sub-category
mixture m in Equation (5), we found it useful to calibrate
the scores returned from each mixture m using Platt re-
scaling [17].

4. Experiments

4.1. Performance Metric

Our dataset (Section 2) consists of annotated images,
where for each image, all pairs of people are labeled with
a set of active touch codes. We evenly partition our dataset
into a train and test set. Given a test image, we consider
two scenarios: (1) We assume we have ground-truth face
locations or (2) We use face detections from a commercial
face detector with removed false positives. Note we must
deal with false negatives in the latter case, as we will later
show. We score the ability of our system to correctly label
touch codes for each pair of faces. Specifically, we evalu-
ate a proxemic model p with its ability to retrieve “correct”

pairs from the test set: we score it on each pair with Equa-
tion (5), and generate a precision-recall curve by threshold-
ing the score. We then compute average precision (AP) as
in [5].

4.2. Comparison with Baselines

We first compare our Joint model with two baselines.
The first baseline is the Sequential algorithm described in
Section 3.1. The second is the Visual Phrases algorithm
[19] which directly models complex visual relationships in-
volving two objects as a single phenomenon. Both baselines
are trained (using publicly-available code [6, 23]) on the
same training data as our models. In Figure 7 we plot the
AP for each proxemic under two cases. In Figure 7(a) all
three algorithms use the ground-truth head locations from
our proxemics database. In Figure 7(b) none of the algo-
rithms had access to true location of the heads, but estimated
them using a face detector [20].

The first thing to note is that in both scenarios Joint out-
performs both baselines across all six proxemics. For ex-
ample, when using the ground-truth face locations, the av-
erage AP is 54.1% compared to 28.2% using Sequential
and 26.4% using Visual Phrases. While these results illus-
trate how difficult the problem is, the improvement using
Joint is huge.

As illustrated in Figure 3, Sequential fails mainly be-
cause the pose estimation algorithm is simply not robust
enough. On a sample dataset consisting of two people in-
teracting, we found that part localization accuracy dropped
from 86.6% for the shoulders to 45.6% for the elbows and
24.4% for the hands. This dropoff in robustness with dis-
tance from the head is illustrated in Figure 3 where Sequen-
tial is competitive for the shoulder-shoulder touch code.
Note that Sequential may fare better when trained with a
mixture of articulated models, tuned for each proxemic cat-
egory. We consider such a baseline below in Section 4.3.

Perhaps somewhat surprisingly, Visual Phrases do not
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No Submixtures

Without Key Spring

Figure 8: Ablation studies to show importance of using
proxemic Sub-categories and Proxemic Dependent Geom-
etry. Please see text for further descriptions.

perform any better than Sequential. While Visual Phrases
do capture some deformation, they are limited because their
parts are not articulated, and moreover part locations are es-
timated independently given the base location. This con-
trasts to our pictorial structure model where the positions
of articulated parts are tightly constrained along the chain
connecting the heads of the two people. See Figure 5. As
we will show below in Section 4.3, the spring connecting
the touching body parts is vital to our approach.

The result for all 3 algorithms when using the face de-
tector in Figure 3(b) are worse across the board. The reason
is quite simply that the face detector only detects around
80% of the faces. When either of the two faces is not de-
tected, there is no way for any of the algorithms to classify
the proxemic correctly. In such cases we assign all three
algorithms a very large negative score which reduces the
recall, while preserving the precision. The false negative
rate for our face detector is somewhat high due to the large
number of extreme poses with partial occlusions. While our
approach would clearly benefit from a better face/person de-
tector, relative performance of the three algorithms remains
consistent in both ideal and realistic conditions.

Finally, though our joint model improves performance
across all touch codes, we found less of an improvement for
touch codes which tended to be confused with one another
(e.g., “hand-shoulder” vs. “elbow-shoulder”).

4.3. Ablation Studies

In Figure 8 we present a comparison between Joint and
two variants to help explain where the performance im-
provement is coming from. No Submixtures does not use
the sub-categories described in Section 3.2.1. Otherwise
the algorithm is identical. Without Key Spring is iden-
tical to Joint, and does use the sub-mixtures, except that
the spring connecting the two people is removed. See Fig-
ure 5. The Without Key Spring model is two disconnected
trees/chains.

The results in Figure 8 show these two components in

our model to be vitally important. No Submixtures shows
that mixtures help capture the large amount of visual ap-
pearance variation within each proxemic class. Without
Key Spring can be thought of as a augmented Sequential
baseline. It is augmented in that (1) the articulated pose
model uses submixtures and (2) two consistent submixtures
are required to fire for each pair of people. Indeed, Without
Key Spring does outperform Sequential. However, the ad-
ditional spatial constraint encoded by the key spring is even
more useful than these other factors.

4.4. Effect of our approach on Pose Estimation

Though we have focused on proxemic classification of
touch codes, our joint model also provides better estimates
of pose. We show qualitative results on Figure 9. Quan-
titatively, we evaluate pose estimation by computing the
fraction of times a model correctly predicts the location of
the two touching parts (using the criteria from [4]). Across
all touch codes, Joint correctly predicts locations 73.6% of
the time, Without Key Spring performs at 62.5%, while
Sequential performs at 47.5%. Joint reports significantly
more accurate poses because it better models occlusions and
exploits multi-body spatial constraints.

5. Conclusions
In this paper, we introduced the problem of proxemic

recognition in consumer photographs. To foster future re-
search in the area, we have created a dataset that will be
freely available for research purposes. We showed the im-
portance of joint modeling of body pose estimation and
proxemic recognition to enable synergies between the two
problems. In the process, we also showed the serious fail-
ure modes of existing pose estimation, in the presence of
multiple interacting people in the image.

This area of proxemic recognition is still in its infancy,
and we have barely touched the surface. This means that
we have a huge arena for future directions, both in the al-
gorithm side and in the space of interactions that can be de-
fined. Extensions along the algorithmic side can involve, for
instance, enabling competition between the touchcodes that
helps to leverage interesting relationships between body
parts, and thereby serving as good indicators for recogni-
tion. In a parallel thread, currently, we have used touch
codes for ease of labeling. However, it is a lot more interest-
ing when we can map them to semantics such as “hugging”.
Another potential direction is identifying a more broader
type of activity (eg. a birthday party or a sking retreat?) that
the interacting people are engaged in, by possibly, making
use of other cues in the image.

Acknowledgements: The research described in this pa-
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Research. DR was supported by NSF Grant 0954083 and
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Figure 9: We show sample results for pose estimation. On the top, we show results of Sequential, which independently
estimates poses of each person. In the middle, we show Without Key Spring where the spring connecting the two bodies is
removed. In the bottom, we show our Joint algorithm. Our joint approach produces more reliable pose estimates because it
better models occlusions and spatial constraints specific to each touch code.
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