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Introduction

                                            

We describe a new method for human pose estimation in static images based

on a novel representation of part models, ourperforming past work while being

orders of magnitude faster.

Motivation
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• Classic articulated limb model (middle left) for full-body pose estima-
tion is difficult because limbs vary greatly in appearance due to changes
in clothing and body shape as well as changes in viewpoint manifested in
in-plane orientations and foreshortening.

• Articulated limb models obtained by rotating single template may be sub-
optimal since they cannot exploit orientation-specific background statistics,
due to the fact that natural images contain more horizontal edges than
vertical and diagonal edges (left).

• We address these problems by introducing a mixture of non-oriented picto-
rial structures (middle right, right) that deform to model a family of
affinely-warpped templates.

Model Visualization

                      

 

A visualization of our full-body model trained on the Parse dataset. We show
them as 4 separate models, but we emphasize that our representation allows
for the composition of any part type with any other part type, where the score
associated with each combination decomposes into a tree (and so is efficient
to search over) and is learned from training data.

Model

We augement the standard pictorial structure model:

S(x, l, k) = Σi∈V
 wi

ki
· φ(x, li) + biki



+ Σij∈E
 wij

ki,kj · ψ(li, lj) + bijki,kj


• x : image window
• li : the pixel location of part i
• ki : the type (mixture component) of part i, our motivating example of

types include orientations of a part but types may span semantic classes
• φ(x, li) : local appearance feature (e.g. HOG) extracted from location li
• ψ(li, lj) : spatial feature extracted from the relative location li w.r.t. lj
• wi

ki
: local appearance template for part i with type assignment ki

• biki : local appearance bias for part i with type assignment ki
• wij

ki,kj : spatial spring parameter for pair of types (ki, kj)
• bijki,kj : the bias for co-occurrences of pair of types (ki, kj)

Inference

Inference corresponds to maximizing S(x, l, k) over l and k. When the re-

lational graph (V,E) is a tree, this can be done efficiently with dynamic

programming. Let kids(i) be the set of children of i in (V,E). We compute

the message of part i passes to its parent j :

si(li, ki) = biki + wi
ki
· φ(x, li) + Σj∈kids(i)mj(li, ki)

mi(lj, kj) = max
ki

bijki,kj + max
li
si(li, ki) + wij

ki,kj · ψ(li, lj)

Learning

Given labeled positive examples {xn, ln, kn} and negative examples {xn}, we

write zn = (ln, kn), and S(x, z) = β · Φ(x, z). We learn the model using

structural SVM :

arg min
β,ξn≥0

1
2
||β|| + CΣnξn

s.t. ∀n ∈ pos β · Φ(xn, zn) ≥ 1− ξn
∀n ∈ neg,∀z β · Φ(xn, z) ≤ −1 + ξn

Partial Supervision
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Left knee wrt hip Left foot wrt knee Left hand wrt elbowNeck wrt Head Left elbow wrt shoulder

Most human pose datasets include images with labeled joint positions. We
define parts to be located at joints so these provide part locations l. We
assume part types k correspond to different relative locations of a part with
respect to its parent in the relational graph (V,E). We use K-means for
type initialization and treat the type as a latent variable that is optimized by
coordinate descent during learning.

Results

Image Parse Testset
Method Torso Head U.leg L.leg U.arm L.arm Total
R Grad[3] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Grad+RGB[3] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG[4] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG[5] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB[5] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG+RGB[6] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
JE NLHOG[7] 85.4 76.1 73.4 65.4 64.7 46.9 66.2
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

• We compare our model to all published results on the Parse dataset, using
the standard criteria of PCP [8]. We beat all previous results on both total
and per-part basis, except for torso and lower arm detection.

• [5] uses the same HOG feature set as us but embedded in a classic articulated
pictorial structure. The relative improvement of our approach is 20%.

Subset of Buffy Testset
Method Torso Head U.arm L.arm Total
TF[9] 62.3
ARS[4] 90.7 95.5 79.3 41.2 73.5
EFZ[10] 98.7 97.9 82.8 59.8 80.1
SJT[11] 100 100 91.1 65.7 85.9
STT[12] 100 96.2 95.3 63.0 85.5
Our Model 100 100 96.8 64.1 87.0

• The Buffy testset is distributed with a subset of windows detected by a
rigid HOG upper-body detector. We compare our results to all previously
published work on this subset.

• We obtain the best overall PCP while being orders of magnitude faster than
the next-best approaches. Our total pipeline requires 1 second to process
an image, while [11, 12] take 5 minutes.

Upper body detection on Buffy Testset
Rigid HOG[8] Deformable Parts[2] Our Model

85.1 93.8 98.6

• Our model also serves as an accurate detector. We obtain significantly
better upper-body detection results than past work evaluated on the full
testset.

• [2] uses a star-structured model of HOG templates trained with weakly-
supervised data. Our results suggest more complex object structure, when
learned with supervision, can yeild improved results for detection.

Full Buffy Testset
Method Torso Head U.arm L.arm Total
TF[9] 53.0
ARS[4] 77.2 81.3 67.5 35.1 62.6
EFZ[10] 84.0 83.4 70.5 50.9 68.2
SJT[11] 85.1 85.1 77.6 55.9 73.1
STT[12] 85.1 81.9 81.1 53.6 72.8
Our Model 98.6 98.6 95.4 63.2 85.7

• As pointed out by [9], the subset of Buffy testset contains little pose varia-
tion because they are biased to be responses of rigid template.

• The distributed evaluation protocol also allows one to compute performance
on the full test videos by multiplying PCP values with the overall detection
rate.

• Because our model also serves as a very accurate detector, we obtain sig-
nificantly better results than past work when evaluated on the full testset.

Good Examples
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