Articulated Pose Estimation with Flexible Mixtures of Parts Yi Yang, Deva Ramanan

Introduction

We describe a new method for human pose estimation in static images based on a novel representation of part models, ourperforming past work while being orders of magnitude faster.

Motivation

- Classic articulated limb model (middle left) for full-body pose estimation is difficult because limbs vary greatly in appearance due to changes in clothing and body shape as well as changes in viewpoint manifested in in-plane orientations and foreshortening.
- Articulated limb models obtained by rotating single template may be suboptimal since they cannot exploit orientation-specific background statistics, due to the fact that natural images contain more horizontal edges than vertical and diagonal edges (left).
- We address these problems by introducing a mixture of non-oriented pictorial structures (middle right, right) that deform to model a family of affinely-warpped templates.

Model Visualization

A visualization of our full-body model trained on the Parse dataset. We show them as 4 separate models, but we emphasize that our representation allows for the composition of any part type with any other part type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is learned from training data.

Department of Computer Science, University of California, Irvine

Model

We augement the standard pictorial structure model:

$$S(x, l, k) = \sum_{i \in V} \left[w_{k_i}^i \cdot \phi(x, l_i) + b_{k_i}^i \right] + \sum_{ij \in E} \left[w_{k_i, k_j}^{ij} \cdot \psi(l_i, l_j) + b_{k_i, k_j}^{ij} \right]$$

- x : image window
- l_i : the pixel location of part *i*

• k_i : the type (mixture component) of part *i*, our motivating example of types include orientations of a part but types may span semantic classes

- $\phi(x, l_i)$: local appearance feature (e.g. HOG) extracted from location l_i • $\psi(l_i, l_j)$: spatial feature extracted from the relative location l_i w.r.t. l_j
- $w_{k_i}^i$: local appearance template for part *i* with type assignment k_i
- $b_{k_i}^i$: local appearance bias for part *i* with type assignment k_i
- w_{k_i,k_j}^{ij} : spatial spring parameter for pair of types (k_i,k_j)
- b_{k_i,k_j}^{ij} : the bias for co-occurrences of pair of types (k_i,k_j)

Inference

Inference corresponds to maximizing S(x, l, k) over l and k. When the relational graph (V, E) is a tree, this can be done efficiently with dynamic programming. Let kids(i) be the set of children of i in (V, E). We compute the message of part i passes to its parent j:

$$s_{i}(l_{i}, k_{i}) = b_{k_{i}}^{i} + w_{k_{i}}^{i} \cdot \phi(x, l_{i}) + \sum_{j \in \text{kids}(i)} m_{j}(l_{i}, k_{i})$$
$$m_{i}(l_{j}, k_{j}) = \max_{k_{i}} b_{k_{i}, k_{j}}^{ij} + \max_{l_{i}} s_{i}(l_{i}, k_{i}) + w_{k_{i}, k_{j}}^{ij} \cdot \psi(l_{i}, l_{i})$$

Learning

Given labeled positive examples $\{x_n, l_n, k_n\}$ and negative examples $\{x_n\}$, we write $z_n = (l_n, k_n)$, and $S(x, z) = \beta \cdot \Phi(x, z)$. We learn the model using structural SVM :

> $\arg\min_{\beta,\xi_n\geq 0} \quad \frac{1}{2}||\beta|| + C\Sigma_n\xi_n$ s.t. $\forall n \in \text{pos} \quad \beta \cdot \Phi(x_n, z_n) \ge 1 - \xi_n$ $\forall n \in \operatorname{neg}, \forall z \quad \beta \cdot \Phi(x_n, z) \leq -1 + \xi_n$

Partial Supervision

Most human pose datasets include images with labeled joint positions. We define parts to be located at joints so these provide part locations l. We assume part types k correspond to different relative locations of a part with respect to its parent in the relational graph (V, E). We use K-means for type initialization and treat the type as a latent variable that is optimized by coordinate descent during learning.

rate.

Results

	U						
Method	Torso	Head	U.leg	L.leg	U.arm	L.arm	Total
R Grad[3]	39.5	21.4	20.7	20.7	12.7	11.7	19.2
R Grad+RGB[3]	52.1	37.5	31.0	29.0	17.5	13.6	27.2
ARS HOG[4]	81.4	75.6	63.2	55.1	47.6	31.7	55.2
JE HOG[5]	73.2	62.4	58.6	52.2	47.8	32.5	51.8
JE HOG+RGB[5]	77.6	68.8	61.5	54.9	53.2	39.3	56.4
SNH ROG+RGB[6]	91.2	76.6	71.5	64.9	50.0	34.2	60.9
JE NLHOG[7]	85.4	76.1	73.4	65.4	64.7	46.9	66.2
Our Model HOG	89.8	87.8	78.5	69.0	64.4	36.1	67.4

Image Parse Testset

• We compare our model to all published results on the Parse dataset, using the standard criteria of PCP [8]. We beat all previous results on both total and per-part basis, except for torso and lower arm detection.

• [5] uses the same HOG feature set as us but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%.

	Su	bset	of E	Suffy	Tests	et
1	1	m	тт	1 TT	т	r I r

Method	Torso	Head	U.arm	L.arm	Total
TF[9]					62.3
ARS[4]	90.7	95.5	79.3	41.2	73.5
EFZ[10]	98.7	97.9	82.8	59.8	80.1
SJT[11]	100	100	91.1	65.7	85.9
STT[12]	100	96.2	95.3	63.0	85.5
Our Model	100	100	96.8	64.1	87.0

• The Buffy testset is distributed with a subset of windows detected by a rigid HOG upper-body detector. We compare our results to all previously published work on this subset.

• We obtain the best overall PCP while being orders of magnitude faster than the next-best approaches. Our total pipeline requires 1 second to process an image, while [11, 12] take 5 minutes.

Upper body detection on Buffy Testset

Rigid HOG[8]	Deformable Parts[2]	Our Model
85.1	93.8	98.6

• Our model also serves as an accurate detector. We obtain significantly better upper-body detection results than past work evaluated on the full testset.

• [2] uses a star-structured model of HOG templates trained with weaklysupervised data. Our results suggest more complex object structure, when learned with supervision, can yeild improved results for detection.

Method	Torso	Head	U.arm	L.arm	Total
TF[9]					53.0
ARS[4]	77.2	81.3	67.5	35.1	62.6
EFZ[10]	84.0	83.4	70.5	50.9	68.2
SJT[11]	85.1	85.1	77.6	55.9	73.1
STT[12]	85.1	81.9	81.1	53.6	72.8
Our Model	98.6	98.6	95.4	63.2	85.7

Full Buffy Testset

• As pointed out by [9], the subset of Buffy testset contains little pose variation because they are biased to be responses of rigid template.

• The distributed evaluation protocol also allows one to compute performance on the full test videos by multiplying PCP values with the overall detection

• Because our model also serves as a very accurate detector, we obtain significantly better results than past work when evaluated on the full testset.

Good Examples

References

[1] Pictorial structures for object recognition. IJCV (2005).

[2] Object detection with discriminatively trained part based models. PAMI (2010).

[3] Learning to parse images of articulated bodies. NIPS (2007).

[4] Pictorial structures revisited: People detection and articulated pose estimation. Proc. CVPR (2009). [5] Combining discriminative appearance and segmentation cues for articulated human pose estimation. ICCV Workshops (2010).

[6] Efficient inference with multiple heterogenous part detectors for human pose estimation. ECCV (2010). [7] Clustered pose and nonlinear appearance models for human pose estimation. BMVC (2010).

[8] Progressive search space reduction for human pose estimation. CVPR (2008).

[9] Improved human parsing with a full relational model. ECCV (2010).

[10] Better appearance models for pictorial structures. Proc. BMVC (2009).

[11] Adaptive pose priors for pictorial structures. CVPR (2010).

[12] Cascaded models for articulated pose estimation. ECCV (2010).