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Abstract

Large-scale supervised datasets are crucial to train con-
volutional neural networks (CNNs) for various computer vi-
sion problems. However, obtaining a massive amount of
well-labeled data is usually very expensive and time con-
suming. In this paper, we introduce a general framework
to train CNNs with only a limited number of clean labels
and millions of easily obtained noisy labels. We model the
relationships between images, class labels and label noises
with a probabilistic graphical model and further integrate
it into an end-to-end deep learning system. To demonstrate
the effectiveness of our approach, we collect a large-scale
real-world clothing classification dataset with both noisy
and clean labels. Experiments on this dataset indicate that
our approach can better correct the noisy labels and im-
proves the performance of trained CNNs.

1. Introduction
Deep learning with large-scale supervised training

dataset has recently shown very impressive improvement
on multiple image recognition challenges including image
classification [12], attribute learning [29], and scene clas-
sification [8]. While state-of-the-art results have been con-
tinuously reported [23,25,28], all these methods require re-
liable annotations from millions of images [6] which are
often expensive and time-consuming to obtain, prevent-
ing deep models from being quickly trained on new image
recognition problems. Thus it is necessary to develop new
efficient labeling and training frameworks for deep learning.

One possible solution is to automatically collect a large
amount of annotations from the Internet web images [10]
(i.e. extracting tags from the surrounding texts or keywords
from search engines) and directly use them as ground truth
to train deep models. Unfortunately, these labels are ex-
tremely unreliable due to various types of noise (e.g. label-
ing mistakes from annotators or computing errors from ex-
traction algorithms). Many studies have shown that these
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Figure 1. Overview of our approach. Labels of web images often
suffer from different types of noise. A label noise model is pro-
posed to detect and correct the wrong labels. The corrected labels
are used to train underlying CNNs.

noisy labels could adversely impact the classification ac-
curacy of the induced classifiers [20, 22, 31]. Various la-
bel noise-robust algorithms are developed but experiments
show that performances of classifiers inferred by robust al-
gorithms are still affected by label noise [3, 26]. Other data
cleansing algorithms are proposed [2, 5, 17], but these ap-
proaches are difficult in distinguishing informative hard ex-
amples from harmful mislabeled ones.

Although annotating all the data is costly, it is often easy
to obtain a small amount of clean labels. Based on the ob-
servation of transferability of deep neural networks, peo-
ple initialize parameters with a model pretrained on a larger
yet related dataset [12], and then finetune on the smaller
dataset of specific tasks [1,7,21]. Such methods may better
avoid overfitting and utilize the relationships between the



two datasets. However, we find that training a CNN from
scratch with limited clean labels and massive noisy labels
is better than finetuning it only on clean labels. Other ap-
proaches address the problem as semi-supervised learning
where noisy labels are discarded [30]. These algorithms
usually suffer from model complexity thus cannot be ap-
plied on large-scale datasets. Therefore, it is inevitable to
develop a better way of using the huge amount of noisy la-
beled data.

Our goal is to build an end-to-end deep learning system
that is capable of training with both limited clean labels and
massive noisy labels more effectively. Figure 1 shows the
framework of our approach. We collect 1, 000, 000 clothing
images from online shopping websites. Each image is auto-
matically assigned with a noisy label according to the key-
words in its surrounding text. We manually refine 72, 409
image labels, which constitute a clean sub-dataset. All the
data are then used to train CNNs, while the major challenge
is to identify and correct wrong labels during the training
process.

To cope with this challenge, we extend CNNs with a
novel probabilistic model, which infers the true labels and
uses them to supervise the training of the network. Our
work is inspired by [24], which modifies a CNN by inserting
a linear layer on top of the softmax layer to map clean labels
to noisy labels. However, [24] assumes noisy labels are con-
ditionally independent of input images given clean labels.
However, when examining our collected dataset, we find
that this assumption is too strong to fit the real-world data
well. For example, in Figure 2, all the images should belong
to “Hoodie”. The top five are correct while the bottom five
are either mislabeled as “Windbreaker” or “Jacket”. Since
different sellers have their own bias on different categories,
they may provide wrong keywords for similar clothes. We
observe these visual patterns and hypothesize that they are
important to estimate how likely an image is mislabeled.
Based on these observations, we further introduce two types
of label noise:

• Confusing noise makes the noisy label reasonably
wrong. It usually occurs when the image content is
confusing (e.g., the samples with “?” in Figure 1).

• Pure random noise makes the noisy label totally
wrong. It is often caused by either the mismatch be-
tween an image and its surrounding text, or the false
conversion from the text to label (e.g., the samples with
“×” in Figure 1).

Our proposed probabilistic model captures the relations
among images, noisy labels, ground truth labels, and noise
types, where the latter two are treated as latent variables.
We use the Expectation-Maximization (EM) algorithm to
solve the problem and integrate it into the training process
of CNNs. Experiments on our real-world clothing dataset
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Figure 2. Mislabeled images often share similar visual patterns.

indicate that our model can better detect and correct the
noisy labels.

Our contributions fall in three aspects. First, we study
the cause of noisy labels in real-world data and describe it
with a novel probabilistic model. Second, we integrate the
model into a deep learning framework and explore different
training strategies to make the CNNs learn from better su-
pervisions. Finally, we collect a large-scale clothing dataset
with both noisy and clean labels, which will be released for
academic use.

2. Related Work
Learning with noisy labeled training data has been exten-

sively studied in the machine learning and computer vision
literature. For most of the related work including the effect
of label noises, taxonomy of label noises, robust algorithms
and noise cleaning algorithms for learning with noisy data,
we refer to [9] for a comprehensive review.

Direct learning with noisy labels: Many studies have
shown that label noises can adversely impact the classifi-
cation accuracy of induced classifiers [31]. To better han-
dle label noise, some approaches rely on training classi-
fiers with label noise-robust algorithms [4, 15]. However,
Bartlett et al. [3] prove that most of the loss functions are
not completely robust to label noise. Experiments in [26]
show that the classifiers inferred by label noise-robust algo-
rithms are still affected by label noise. These methods seem
to be adequate only when label noise can be safely man-
aged by overfitting avoidance [9]. On the other hand, some
label noise cleansing methods were proposed to remove or
correct mislabeled instances [2,5,17], but these approaches
were difficult in distinguishing informative hard examples
from harmful mislabeled ones. Thus they might remove too
many instances and the overcleansing could reduce the per-
formances of classifiers [16].

Semi-supervised learning: Apart from direct learning
with label noise, some semi-supervised learning algorithms
were developed to utilize weakly labeled or even unlabeled
data. The Label Propagation method [30] explicitly used
ground truths of well labeled data to classify unlabeled sam-
ples. However, it suffered from computing pairwise dis-



tance, which has quadratic complexity with the number of
samples thus cannot be applied on large-scale datasets. We-
ston et al. [27] proposed to embed a pairwise loss in the
middle layer of a deep neural network, which benefits the
learning of discriminative features. But they needed ex-
tra information about whether a pair of unlabeled images
belong to the same class, which cannot be obtained in our
problem.

Transfer learning: The success of CNNs lies in their
capability of learning rich and hierarchical image features.
However, the model parameters cannot be properly learned
when training data is not enough. Researchers proposed to
conquer this problem by first initializing CNN parameters
with a model pretrained on a larger yet related dataset, and
then finetuning it on the smaller dataset of specific task [1,
7,12,21]. Nevertheless, this transfer learning scheme could
be suboptimal when the two tasks are just loosely related.
In our case of clothing classification, we find that training
a CNN from scratch with limited clean labels and massive
noisy labels is better than finetuning it only on the clean
labels.

Noise modeling with deep learning: Various methods
have been proposed to handle label noise in different prob-
lem settings, but there are very few works about deep learn-
ing from noisy labels [13, 18, 24]. Mnih and Hinton [18]
built a simple noise model for aerial images but only con-
sidered binary classification. Larsen et al. [13] assumed la-
bel noises are independent from true class labels which is
a simple and special case. Sukhbaatar et al. [24] gener-
alized from them by considering multi-class classification
and modeling class dependent noise, but they assumed the
noise was conditionally independent with the image con-
tent, ignoring the hardness of labeling images of different
confusing levels. Our work can be viewed as a generaliza-
tion of [19,24] and our model is flexible enough to not only
class dependent but also image dependent noise.

3. Label Noise Model
We target on learning a classifier from a set of images

with noisy labels. To be specific, we have a noisy la-
beled dataset Dη =

{(
x(1), ỹ(1)

)
, . . . ,

(
x(N), ỹ(N)

)}
with

n-th image x(n) and its corresponding noisy label ỹ(n) ∈
{1, . . . , L}, where L is the number of classes. We describe
how the noisy label is generated by using a probabilistic
graphical model shown in Figure 3.

Despite the observed image x and the noisy label ỹ, we
exploit two discrete latent variables — y and z — to rep-
resent the true label and the label noise type, respectively.
Both ỹ and y are L-dimensional binary random variables
in 1-of-L fashion, i.e., only one element is equal to 1 while
others are all 0.

The label noise type z is an 1-of-3 binary random vari-
able. It is associated with three semantic meanings:

N
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Figure 3. Probabilistic graphical model of label noise
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Figure 4. Predicting noise types of four different “T-shirt” images.
The top two can be recognized with little ambiguity, while the
bottom two are easily confusing with the class “Chiffon”. Image
content can affect the possibility of it to be mislabeled.

1. The label is noise free, i.e., ỹ should be equal to y.

2. The label suffers from a pure random noise, i.e., ỹ can
take any possible value other than y.

3. The label suffers from a confusing noise, i.e., ỹ can
take several values that are confusing with y.

Following this assignment rule, we define the conditional
probability of the noisy label as

p(ỹ|y, z) =

⎧
⎪⎨

⎪⎩

ỹT Iy if z1 = 1
1

L−1 ỹ
T (U− I)y if z2 = 1

ỹTCy if z3 = 1,

(1)

where I is the identity matrix, U is the unit matrix (all the
elements are ones), C is a sparse stochastic matrix with
tr(C) = 0 and Cij denotes the confusion probability be-
tween classes i and j. Then we can derive from Figure 3
the joint distribution of ỹ,y and z conditioning on x,

p(ỹ,y, z|x) = p(ỹ|y, z)p(y|x)p(z|x). (2)

While the class label probability distribution p(y|x) is
comprehensible, the semantic meaning of p(z|x) needs ex-
tra clarification: it represents how confusing the image con-
tent is. Specific to our clothing classification problem,
p(z|x) can be affected by different factors, including back-
ground clutter, image resolution, the style and material of
the clothes. Some examples are shown in Figure 4.



To illustrate the relations between noisy and true labels,
we derive their conditional probability from Eq. 2,

p(ỹ|y,x) =
∑

z

p(ỹ, z|y,x) =
∑

z

p(ỹ|y, z)p(z|x), (3)

which can be interpreted as a mixture model. Given an input
image x, the conditional probability p(z|x) can be seen as
the prior of each mixture component. This makes a key
difference between our work and [24], where they assume
ỹ is conditionally independent with x if y is given. All
the images share a same noise model in [24], while in our
approach each data sample has its own.

3.1. Learning the Parameters

We exploit two CNNs to model p(y|x) and p(z|x) sep-
arately. Denote the parameter set of each CNN by θ1 and
θ2. Our goal is to find the optimal θ = θ1 ∪ θ2 that maxi-
mizes the incomplete log-likelihood log p(ỹ|x; θ). The EM
algorithm is used to iteratively solve this problem.

For any probability distribution q(y, z|ỹ,x), we can de-
rive a lower bound of the incomplete log-likelihood,

log p(ỹ|x; θ) = log
∑

y,z

p(ỹ,y, z|x; θ)

≥
∑

y,z

q(y, z|ỹ,x) log p(ỹ,y, z|x; θ)
q(y, z|ỹ,x) .

(4)

E-Step The difference between log p(ỹ|x; θ) and
its lower bound is the Kullback-Leibler divergence
KL (q(y, z|ỹ,x)||p(y, z|ỹ,x; θ)), which is equal to zero
if and only if q(y, z|ỹ,x) = p(y, z|ỹ,x; θ). Therefore,
in each iteration t, we first compute the posterior of latent
variables using the current parameters θ(t),

p(y, z|ỹ,x; θ(t)) = p(ỹ,y, z|x; θ(t))
p(ỹ|x; θ(t))

=
p(ỹ|y, z; θ(t))p(y|x; θ(t))p(z|x; θ(t))∑

y′,z′ p(ỹ|y′, z′; θ(t))p(y′|x; θ(t))p(z′|x; θ(t))
. (5)

Then the expected complete log-likelihood can be written
as

Q(θ; θ(t)) =
∑

y,z

p(y, z|ỹ,x; θ(t)) log p(ỹ,y, z|x; θ). (6)

M-Step We exploit two CNNs to model the probability
p(y|x; θ1) and p(z|x; θ2), respectively. Thus the gradient

of Q w.r.t. θ can be decoupled into two parts:

∂Q

∂θ
=

∑

y,z

p(y, z|ỹ,x; θ(t)) ∂

∂θ
log p(ỹ,y, z|x; θ)

=
∑

y

p(y|ỹ,x; θ(t)) ∂

∂θ1
log p(y|x; θ1)+

∑

z

p(z|ỹ,x; θ(t)) ∂

∂θ2
log p(z|x; θ2). (7)

The M-Step above is equivalent to minimizing the cross
entropy between the estimated ground truth distribution and
the prediction of the classifier.

3.2. Estimating Matrix C

Notice that we do not set parameters to the conditional
probability p(ỹ|y, z) in Eq. (1) and keep it unchanged dur-
ing the learning process. Because without other regulariza-
tions, learning all the three parts in Eq. (2) could lead to
trivial solutions. For example, the network will always pre-
dict y1 = 1, z3 = 1, and the matrix C is learned to make
C1i = 1 for all i. To avoid such degeneration, we esti-
mate C on a relatively small dataset Dc = {(x,y, ỹ)}N ,
where we have N images with both clean and noisy labels.
As prior information about z is not available, we solve the
following optimization problem:

max
C,z(1),··· ,z(N)

N∑

i=1

log p(ỹ(i)|y(i), z(i)). (8)

Obviously, sample i contributes nothing to the optimal C∗

if y(i) and ỹ(i) are equal. So that we discard those samples
and reinterpret the problem in another form by exploiting
Eq. (1):

max
C,t

E =
N ′∑

i=1

logαti + log(ỹ(i)TCy(i))1−ti ,

subject to C is a stochastic matrix of size L× L,

t ∈ {0, 1}N
′
,

(9)

where α = 1
L−1 and N ′ is the number of remaining sam-

ples. The semantic meaning of the above formulation is that
we need to assign each (y, ỹ) pair the optimal noise type,
while finding the optimal C simultaneously.

Next, we will show that the problem can be solved by a
simple yet efficient algorithm in O(N ′+L2) time complex-
ity. Denote the optimal solution by C∗ and t∗

Theorem 1. C∗
ij ̸= 0 ⇒ C∗

ij > α, ∀i, j ∈ {1, . . . , L}.

Proof. Suppose there exists some i, j such that 0 < C∗
ij ≤

α. Then we conduct the following operations. First, we set
C∗

ij = 0 while adding its original value to other elements



in column j. Second, for all the samples n where ỹ(n)
i = 1

and y(n)
j = 1, we set tn to 1. The resulting E will get

increased, which leads to a contradiction.

Theorem 2. (ỹ(i),y(i)) = (ỹ(j),y(j)) ⇒ t∗i = t∗j , ∀i, j ∈
{1, . . . , N ′}.

Proof. Suppose ỹ(i)
k = ỹ(j)

k = 1 and y(i)
l = y(j)

l = 1
but t∗i ̸= t∗j . From Theorem 1 we know that elements in
C∗ is either 0 or greater than α. If C∗

kl = 0, we can set
t∗i = t∗j = 1, otherwise we can set t∗i = t∗j = 0. In either
case the resulting E will get increased, which leads to a
contradiction.

Theorem 3. ỹ(i)TC∗y(i) > α ⇔ t∗i = 0 and
ỹ(i)TC∗y(i) = 0 ⇔ t∗i = 1, ∀i ∈ {1, . . . , N ′}.

Proof. The first part is straightforward. For the second part,
t∗i = 1 implies ỹ(i)TC∗y(i) ≤ α. By using Theorem 1 we
know that ỹ(i)TC∗y(i) = 0.

Notice that if the true label is class i while the noisy la-
bel is class j, then it can only affect the value of Cij . Thus
each column of C can be optimized separately. Theorem 1
further shows that samples with same pair of (ỹ,y) share
a same noise type. Then what really matters is the fre-
quencies of all the L × L pairs of (ỹ,y). Considering a
particular column c, suppose there are M samples affect-
ing this column. We can count the frequencies of noisy la-
bel class 1 to L as m1, . . . ,mL and might as well assume
m1 ≥ m2 ≥ · · · ≥ mL. The problem is then converted to

max
c,t

E =
L∑

k=1

mk

(
logαtk + log c1−tk

k

)
,

subject to c ∈ [0, 1]L,
L∑

k=1

ck = 1,

t ∈ {0, 1}L.

(10)

Due to the rearrangement inequality, we can prove that
in the optimal solution,

max(α, c∗1) ≥ max(α, c∗2) ≥ · · · ≥ max(α, c∗L). (11)

Then by using Theorem 3, there must exist a k∗ ∈
{1, . . . , L} such that

t∗i = 0, i = 1, . . . , k∗,

t∗i = 1, i = k∗ + 1, . . . , L.
(12)

This also implies that only the first k∗ elements of c∗ have
nonzero values (greater than α actually). Furthermore, if k∗

is known, finding the optimal c∗ is to solve the following
problem:

max
c

E =
k∗∑

k=1

mk log ck,

subject to c ∈ [0, 1]L,
k∗∑

k=1

ck = 1,

(13)

whose solution is

c∗i =
mi∑k∗

k=1 mk

, i = 1, . . . , k∗,

c∗i = 0, i = k∗ + 1, . . . , L.

(14)

The above analysis leads to a simple algorithm. We enu-
merate k∗ from 1 to L. For each k∗, t∗ and c∗ are computed
by using Eq. (12) and (14), respectively. Then we evaluate
the objective function E and record the best solution.

4. Deep Learning from Noisy Labels
We integrate the proposed label noise model into a deep

learning framework. As demonstrated in Figure 5, we pre-
dict the probability p(y|x) and p(z|x) by using two inde-
pendent CNNs. Moreover, we append a label noise model
layer at the end, which takes as input the CNNs’ prediction
scores and the observed noisy label. Stochastic Gradient
Ascent with backpropagation technique is used to approxi-
mately optimize the whole network. In each forward pass,
the label noise model layer computes the posterior of latent
variables according to Eq. (5). While in the backward pass,
it computes the gradients according to Eq. (7).

Directly training the whole network with random ini-
tialization is impractical, because the posterior computation
could be totally wrong. Therefore, we need to pretrain each
CNN component with strongly supervised data. Images and
their ground truth labels in the dataset Dc are used to train
the CNN that predicts p(y|x). On the other hand, the opti-
mal solutions of z(1), · · · , z(N) in Eq. (8) are used to train
the CNN that predicts p(z|x).

After both CNN components are properly pretrained, we
can start to train the whole network with massive noisy la-
beled data. However, some practical issues need further
discussion. First, if we merely use noisy labels, we will
lose precious knowledge that we have gained before and the
model could be drifted. Therefore, we need to mix the data
with clean labels into our training set, which is depicted in
Figure 5 as the extra supervisions for the two CNNs. Then
each CNN receives two kinds of gradients, one is from the
clean labels and the other is from the noisy labels. We de-
note them by ∆c and ∆n, respectively. A potential prob-
lem is that |∆c| ≪ |∆n|, because clean data is much less
than noisy data. To deal with this problem, we bootstrap
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Figure 5. System diagram of our method. Two CNNs are used to predict the class label p(y|x) and the noise type p(z|x), respectively. The
label noise model layer uses both these predictions and the given noisy label to estimate a posterior distribution of the true label, which is
then used to supervise the training of CNNs. Data with clean labels are also mixed in to prevent the models from drifting away.

the clean data Dc to half amount of the noisy data Dη . In
our experiments, we find that the performance of the clas-
sifier drops significantly without upsampling, but it is not
sensitive with the upsampling ratio as long as the number of
clean and noisy samples are in the same order.

Our proposed method has the ability to figure out the
true label given the image and its noisy label. From the per-
spective of information, our model predicts from two kinds
of clues: what are the true labels for other similar images;
and how likely the image is mislabeled. The Label Prop-
agation method [30] explicitly uses the first kind of infor-
mation, while we implicitly capture it with a discriminative
deep model. On the other hand, the second kind of informa-
tion correlates the image content with the label noise, which
can help distinguish between hard samples and mislabeled
ones.

5. Experiments
5.1. Dataset

Since there is no publicly available dataset that has both
clean and noisy labels, to test our method under real-world
scenario, we build a large-scale clothing dataset by crawl-
ing images from several online shopping websites. More
than a million images are collected together with their sur-
rounding texts provided by the sellers. These surrounding
texts usually contain rich information about the products,
which can be further converted to visual tags. Specific to
our task of clothing classification, we define 14 class labels:
T-shirt, Shirt, Knitwear, Chiffon, Sweater, Hoodie, Wind-
breaker, Jacket, Down Coat, Suit, Shawl, Dress, Vest, and
Underwear. We assign an image a noisy label if we find its
surrounding text contains only the keywords of that label,
otherwise we discard the image to reduce ambiguity.

After that we manually refine the noisy labels of a small
portion of all the images and split them into training (Dc),
validation and test sets. On the other hand, the remaining
samples construct the noisy labeled training dataset (Dη).
A crucial step here is to remove from Dc and Dη the images
that are near duplicate with any image in the validation or
test set, which ensures the reliability of our test protocol.
Finally, the size of training datasets are |Dc| = 47, 570 and
|Dη| = 106, while validation and test set have 14, 313 and
10, 526 images, respectively.

The confusion matrix between clean and noisy labels is
presented in Figure 6. We can see that the overall accu-
racy is 61.54%, and some pairs of classes are very confusing
with each other (e.g. Knitwear and Sweater), which means
that the noisy labels are not so reliable.

5.2. Evaluation on the Collected Dataset
We validate our method through a series of ex-

periments conducted on the collected dataset. Our
implementation is based on Caffe [11], and the
bvlc reference caffenet1 is chosen as the
baseline model, which approximates AlexNet [12]. Be-
sides, we reimplement two other approaches. One is a
semi-supervised learning method called Pseudo-Label [14],
which exploits classifier’s prediction as ground truth for
unlabeled data. The other one is the Bottom-Up method
introduced in [24], where the relation between noisy labels
and clean labels are built by a confusion matrix Q. In
the experiments, we directly use the true Q as shown in
Figure 6 instead of estimating its values.

We list all the experiment settings in Table 1. Different
methods require different training data. We use only the
clean data Dc to get the baselines under strong supervisions.

1http://caffe.berkeleyvision.org/model_zoo.html

http://caffe.berkeleyvision.org/model_zoo.html


Figure 6. Confusion matrix between clean and noisy labels. We
hide extremely small grid numbers for better demonstration. Fre-
quency of each true label is listed at the top of each column. The
overall accuracy is 61.54%, which indicates that the noisy labels
are not reliable.

On the other hand, when all the data are used, we upsample
the clean data as discussed in Section 4. Meanwhile, the
noisy labels of Dη are treated as true labels for AlexNet,
and are discarded for Pseudo-Label.

In general, we use a mini-batch size of 256. The learn-
ing rate is initialized to be 0.001 and is divided by 10 after
every 50, 000 iterations. We keep training each model un-
til convergence. Classification accuracies on the test set are
presented in Table 1.

We first study the effect of transfer learning and massive
noisy labeled data. From row #1 we can see that training
a CNN from scratch with only small amount of clean data
can result in bad performance. To deal with this problem,
finetuning from an ImageNet pretrained model can signif-
icantly improve the accuracy, as shown in row #2. How-
ever, by comparing row #2 and #3, we find that training
with random initialization on additional massive noisy la-
beled data is better than finetuning only on the clean data,
which demonstrates the power of using large-scale yet eas-
ily obtained noisy labeled data. The accuracy can be further
improved if we finetune the model either from an ImageNet
pretrained one or model #2. The latter one has slightly
better performance thus is used to initialize the remaining
methods.

Next, from row #6 we can see that semi-supervised
learning methods may not be a good choice when mas-
sive noisy labeled data are available. Although model #6
achieves marginally better result than its base model, it is

Noise Level CIFAR10-quick [24] Ours
30% 65.57% 69.73% 69.81%
40% 62.38% 66.66% 66.76%
50% 57.36% 63.39% 63.00%

Table 2. Accuracies on CIFAR-10 with synthetic label noises. The
label noises generated here only depend on the true labels but not
the image content, which exactly match the assumption of [24] but
are unfavored to our model.

significantly inferior to model #5, which indicates that sim-
ply discarding all the noisy labels cannot fully utilize these
information.

Finally, row #7 and #8 show the effect of modeling the
label noise. Model #7 is only 0.9% better than the baseline
model #5, while our method gains improvement of 2.9%.
This result does credit to our image dependent label noise
model, which fits better to the noisy labeled data crawled
from the Internet.

5.3. Evaluation on CIFAR-10 with Synthetic Noises
We also conduct synthetic experiments on CIFAR-10

following the settings of [24]. We first randomly generate a
confusion matrix Q between clean labels and noisy labels,
and then corrupt the training labels according to it. Based on
Caffe’s CIFAR10-quick model, we compare the [24] (Bot-
tom Up with true Q) with our model under different noise
levels. The test accuracies are reported in Table 2.

It should be noticed that [24] assumed the distribution of
noisy labels only depends on classes, while we assume it
also depends on image content. Label noises generated in
the synthetic experiments exactly match their assumption
but are unfavored to our model. Thus the noise type predic-
tions in our model could be less informative. Nevertheless,
our model achieves comparable performances with [24].

5.4. Effect of Noise Estimation
In order to understand how our model handles noisy

labels, we first show several examples in Figure 7. We
find that given a noisy label, our model exploits its current
knowledge to estimate the probability distribution of the
true label and then replaces the noisy one with it as supervi-
sion. Another interesting observation is that our model can
still figure out the correct label if the prediction of the class
label p(y|x) or the noise type p(z|x) goes wrong. These
two latent variables compensate with each other to help the
system distinguish between hard samples and noisy labeled
ones.

Next we demonstrate the effectiveness of learning to pre-
dict the label noise type. Notice that if an image has low
probability of “noise free” (i.e., p(z1 = 1|x) is small), then
our model will believe it is likely to be mislabeled. In or-
der to check the reliability of these predictions, we estimate



# Method Training Data Initialization Test Accuracy
1 AlexNet Dc random 64.54%
2 AlexNet Dc ImageNet pretrained 72.63%
3 AlexNet upsampled Dc and Dη as ground truths random 74.03%
4 AlexNet upsampled Dc and Dη as ground truths ImaegNet pretrained 75.13%
5 AlexNet upsampled Dc and Dη as ground truths model #2 75.30%
6 Pseudo-Label [14] upsampled Dc and Dη as unlabeled model #2 73.04%
7 Bottom-Up [24] upsampled Dc and Dη model #2 76.22%
8 Ours upsampled Dc and Dη model #2 78.24%

Table 1. Experimental results on the clothing classification dataset. Dc contains 47, 570 clean labels while Dη contains 106 noisy labels.

Image �

Noisy
Label�

True
Label�

p(y | x)

p(z | x)

 p(y | y!,x)

 p(z | y!,x)

Layout for each block�

Figure 7. Examples of handling noisy labels. The information layout for each block is illustrated on the top-left. p(y|x) and p(z|x)
are predictions of the true label and noise type based on image content. After observing the noisy label, our model infers the posterior
distributions p(y|ỹ,x) and p(z|ỹ,x), then replaces the y and z with them as supervisions to the CNNs.

p(z1 = 1|x) on the validation set and sort the images ac-
cordingly in ascending order. For the precision calculation,
we consider a candidate image as true positive if its clean
label mismatches its original noisy label, and our model
predicts it as not “noisy free”. The rank-precision curve
is plotted in Figure 8. It shows that our model can identify
mislabeled samples quite well based on their image content,
which verifies the observation that mislabeled images often
share similar visual patterns.

6. Conclusion
In this paper, we address the problem of training a deep

learning classifier with a massive amount of noisy labeled
training data and a small amount of clean annotations which
are generally easy to collect. To utilize both limited clean
labels and massive noisy labels, we propose a novel prob-
abilistic framework to describe how noisy labels are pro-
duced. We introduce two latent variables, the true label and
the noise type, to bridge the gap between an input image and
its noisy label. We observe that the label noises not only de-
pend on the ambiguity between classes, but could follow
similar visual patterns as well. We build the dependency

Figure 8. Rank-precision curve of label noise predictions. We rank
the validation images from low to high according to their “noise
free” probabilities. For the precision calculation, we consider a
candidate image as true positive if its clean label mismatches its
original noisy label, and our model predicts it as not “noisy free”.

of the noise type w.r.t. images, and infer the ground truth
label with the EM algorithm. We integrate the probabilis-
tic model into a deep learning framework and demonstrate
the effectiveness of our method on a large-scale real-world
clothing classification dataset.
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