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Abstract

While deep convolutional neural networks (CNNs) have
shown a great success in single-label image classification,
it is important to note that real world images generally con-
tain multiple labels, which could correspond to different
objects, scenes, actions and attributes in an image. Tradi-
tional approaches to multi-label image classification learn
independent classifiers for each category and employ rank-
ing or thresholding on the classification results. These tech-
niques, although working well, fail to explicitly exploit the
label dependencies in an image. In this paper, we utilize
recurrent neural networks (RNNs) to address this problem.
Combined with CNNs, the proposed CNN-RNN framework
learns a joint image-label embedding to characterize the
semantic label dependency as well as the image-label rel-
evance, and it can be trained end-to-end from scratch to
integrate both information in a unified framework. Exper-
imental results on public benchmark datasets demonstrate
that the proposed architecture achieves better performance
than the state-of-the-art multi-label classification models.

1. Introduction
Every real-world image can be annotated with multiple

labels, because an image normally abounds with rich se-
mantic information, such as objects, parts, scenes, actions,
and their interactions or attributes. Modeling the rich se-
mantic information and their dependencies is essential for
image understanding. As a result, multi-label classification
task is receiving increasing attention [12, 9, 24, 36]. In-
spired by the great success from deep convolutional neural
networks in single-label image classification in the past few
years [17, 29, 32], which demonstrates the effectiveness of
end-to-end frameworks, we explore to learn a unified frame-
work for multi-label image classification.

A common approach that extends CNNs to multi-label
classification is to transform it into multiple single-label
classification problems, which can be trained with the rank-
ing loss [9] or the cross-entropy loss [12]. However, when
treating labels independently, these methods fail to model
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Figure 1. We show three images randomly selected from ImageNet
2012 classification dataset. The second row shows their corre-
sponding label annotations. For each image, there is only one la-
bel (i.e. Airplane, Great Pyrenees, Archery) annotated in the Im-
ageNet dataset. However, every image actually contains multiple
labels, as suggested in the third row.

the dependency between multiple labels. Previous works
have shown that multi-label classification problems exhibit
strong label co-occurrence dependencies [39]. For instance,
sky and cloud usually appear together, while water and cars
almost never co-occur.

To model label dependency, most existing works are
based on graphical models [39], among which a common
approach is to model the co-occurrence dependencies with
pairwise compatibility probabilities or co-occurrence prob-
abilities and use Markov random fields [13] to infer the fi-
nal joint label probability. However, when dealing with a
large set of labels, the parameters of these pairwise proba-
bilities can be prohibitively large while lots of the param-
eters are redundant if the labels have highly overlapping
meanings. Moreover, most of these methods either can not
model higher-order correlations [39], or sacrifice compu-
tational complexity to model more complicated label rela-
tionships [20]. In this paper, we explicitly model the la-
bel dependencies with recurrent neural networks (RNNs) to
capture higher-order label relationships while keeping the
computational complexity tractable. We find that RNN sig-
nificantly improves classification accuracy.

For the CNN part, to avoid problems like overfitting,
previous methods normally assume all classifiers share the
same image features [36]. However, when using the same
image features to predict multiple labels, objects that are
small in the images are easily get ignored or hard to rec-
ognize independently. In this work, we design the RNNs
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framework to adapt the image features based on the pre-
vious prediction results, by encoding the attention models
implicitly in the CNN-RNN structure. The idea behind it
is to implicitly adapt the attentional area in images so the
CNNs can focus its attention on different regions of the im-
ages when predicting different labels. For example, when
predicting multiple labels for images in Figure 1, our model
will shift its attention to smaller ones (i.e. Runway, Person,
Hat) after recognizing the dominant object (i.e. Airplane,
Great Pyrenees, Archery). These small objects are hard to
recognize by itself, but can be easily inferred given enough
contexts.

Finally, many image labels have overlapping meanings.
For example, cat and kitten have almost the same meanings
and are often interchangeable. Not only does exploiting
the semantic redundancies reduce the computational cost, it
also improves the generalization ability because the labels
with duplicate semantics can get more training data.

The label semantic redundancy can be exploited by joint
image/label embedding, which can be learned via canoni-
cal correlation analysis [10], metric learning [19], or learn-
ing to rank methods [37]. The joint image/label embedding
maps each label or image to an embedding vector in a joint
low-dimensional Euclidean space such that the embeddings
of semantically similar labels are close to each other, and
the embedding of each image should be close to that of
its associated labels in the same space. The joint embed-
ding model can exploit label semantic redundancy because
it essentially shares classification parameters for semanti-
cally similar labels. However, the label co-occurrence de-
pendency is largely ignored in most of these models.

In this paper, we propose a unified CNN-RNN frame-
work for multi-label image classification, which effectively
learns both the semantic redundancy and the co-occurrence
dependency in an end-to-end way. The framework of the
proposed model is shown in Figure 2. The multi-label RNN
model learns a joint low-dimensional image-label embed-
ding to model the semantic relevance between images and
labels. The image embedding vectors are generated by a
deep CNN while each label has its own label embedding
vector. The high-order label co-occurrence dependency in
this low-dimensional space is modeled with the long short
term memory recurrent neurons, which maintains the in-
formation of label context in their internal memory states.
The RNN framework computes the probability of a multi-
label prediction sequentially as an ordered prediction path,
where the a priori probability of a label at each time step can
be computed based on the image embedding and the out-
put of the recurrent neurons. During prediction, the multi-
label prediction with the highest probability can be approx-
imately found with beam search algorithm. The proposed
CNN-RNN framework is a unified framework which com-
bines the advantages of the joint image/label embedding
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Figure 2. An illustration of the CNN-RNN framework for multi-
label image classification. The framework learns a joint embed-
ding space to characterize the image-label relationship as well as
label dependency. The red and blue dots are the label and im-
age embeddings, respectively, and the black dots are the sum of
the image and recurrent neuron output embeddings. The recurrent
neurons model the label co-occurrence dependencies in the joint
embedding space by sequentially linking the label embeddings in
the joint embedding space. At each time step, the probability of a
label is computed based on the image embedding and the output
of the recurrent neurons. (best viewed in color)

and label co-occurrence models, and it can be trained in an
end-to-end way.

Compared with state-of-the-art multi-label image classi-
fication methods, the proposed RNN framework has several
advantages:

• The framework employs an end-to-end model to uti-
lize the semantic redundancy and the co-occurrence
dependency, both of which is indispensable for effec-
tive multi-label classifications.

• The recurrent neurons is more compact and more pow-
erful model of high-order label co-occurrence depen-
dency than other label co-occurrence models in this
task.

• The implicit attention mechanism in the recurrent neu-
rons adapt the image features to better predict small
objects that need more contexts.

We evaluate the proposed CNN-RNN framework with
exhaustive experiments on public multi-label benchmark
datasets inlcuding NUS-WIDE, Microsoft COCO, and
PASCAL VOC 2007. Experimental results demonstrate that
the proposed method achieves significantly better perfor-
mance compared to the current state-of-the-art multi-label
classification methods. We also visualize the attentional re-
gions of the RNN framework with the Deconvolutional net-



works [40]. Interestingly, the visualization shows that the
RNN framework can focus on the corresponding image re-
gions when predicting different labels, which is very similar
to humans’ multi-label classification process.

2. Related Work

The progress of image classification is partly due to the
creation of large-scale hand-labeled datasets such as Ima-
geNet [5], and the development of deep convolutional neu-
ral networks [17]. Recent work that extends deep convolu-
tional neural networks to multi-label classification achieves
good results. Deep convolutional ranking [9] optimizes a
top-k ranking objective, which assigns smaller weights to
the loss if the positive label. Hypotheses-CNN-Pooling
[36] employs max pooling to aggregate the predictions
from multiple hypothesis region proposals. These methods
largely treat each label independently and ignore the corre-
lations between labels.

Multi-label classification can also be achieved by learn-
ing a joint image/label embedding. Multiview Canonical
Correlation Analysis [10] is a three-way canonical analy-
sis that maps the image, label, and the semantics into the
same latent space. WASABI [37] and DEVISE [7] learn
the joint embedding using the learning to rank framework
with WARP loss. Metric learning [19] learns a discrimi-
native metric to measure the image/label similarity. Matrix
completion [1] and bloom filter [3] can also be employed
as label encodings. These methods effectively exploit the
label semantic redundancy, but they fall short on modeling
the label co-occurrence dependency.

Various approaches have been proposed to exploit the la-
bel co-occurrence dependency for multi-label image classi-
fication. [28] learns a chain of binary classifiers, where each
classifier predicts whether the current label exists given the
input feature and the already predicted labels. The label
co-occurrence dependency can also be modeled by graphi-
cal models, such as Conditional Random Field [8], Depen-
dency Network [13], and co-occurrence matrix[39]. Label
augment model [20] augments the label set with common
label combinations. Most of these models only capture
pairwise label correlations and have high computation cost
when the number of labels is large. The low-dimensional
recurrent neurons in the proposed RNN model are more
computationally efficient representations for high-order la-
bel correlation.

RNN with LSTM can effectively model the long-term
temporal dependency in a sequence. It has been success-
fully applied in image captioning [25, 35], machine transla-
tion [31], speech recognition [11], language modeling [30],
and word embedding learning [18]. We demonstrate that
RNN with LSTM is also an effective model for label de-
pendency.
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Figure 3. A schematic illustration of a LSTM neuron. Each LSTM
neuron has an input gate, a forget gate, and an output gate.

3. Method

Since we aim to characterize the high-order label corre-
lation, we employ long short term memory (LSTM) neu-
rons [15] as our recurrent neurons, which has been demon-
strated to be a powerful model of long-term dependency.

3.1. Long Short Term Memory Networks (LSTM)

RNN [15] is a class of neural network that maintains
internal hidden states to model the dynamic temporal be-
haviour of sequences with arbitrary lengths through directed
cyclic connections between its units. It can be considered
as a hidden Markov model extension that employs nonlin-
ear transition function and is capable of modeling long term
temporal dependencies. LSTM extends RNN by adding
three gates to an RNN neuron: a forget gate f to control
whether to forget the current state; an input gate i to indi-
cate if it should read the input; an output gate o to control
whether to output the state. These gates enable LSTM to
learn long-term dependency in a sequence, and make it is
easier to optimize, because these gates help the input sig-
nal to effectively propagate through the recurrent hidden
states r(t) without affecting the output. LSTM also ef-
fectively deals with the gradient vanishing/exploding issues
that commonly appear during RNN training [26].

xt = δ(Ur.r(t− 1) + Uwwk(t))

it = δ(Uirr(t− 1) + Uiwwk(t))

ft = δ(Ufrr(t− 1) + Ufwwk(t))

ot = δ(Uorr(t− 1) + Uowwk(t))

r(t) = ft � r(t− 1) + it � xt
o(t) = r(t)� o(t)

(1)

where δ(.) is an activation function, � is the product with
gate value, and various W matrices are learned parame-
ters. In our implementation, we employ rectified linear units
(ReLU) as the activation function [4].



3.2. Model

We propose a novel CNN-RNN framework for multi-
label classification problem. The illustration of the CNN-
RNN framework is shown in Fig. 4. It contains two parts:
The CNN part extracts semantic representations from im-
ages; the RNN part models image/label relationship and la-
bel dependency.

We decompose a multi-label prediction as an ordered
prediction path. For example, labels “zebra” and “elephant”
can be decomposed as either (“zebra”, “elephant”) or (“ele-
phant”, “zebra”). The probability of a prediction path can
be computed by the RNN network. The image, label, and
recurrent representations are projected to the same low-
dimensional space to model the image-text relationship as
well as the label redundancy. The RNN model is employed
as a compact yet powerful representation of the label co-
occurrence dependency in this space. It takes the embed-
ding of the predicted label at each time step and maintains a
hidden state to model the label co-occurrence information.
The a priori probability of a label given the previously pre-
dicted labels can be computed according to their dot prod-
ucts with the sum of the image and recurrent embeddings.
The probability of a prediction path can be obtained as the
product of the a-prior probability of each label given the
previous labels in the prediction path.

A label k is represented as a one-hot vector ek =
[0, . . . 0, 1, 0, . . . , 0], which is 1 at the k-th location, and 0
elsewhere. The label embedding can be obtained by multi-
plying the one-hot vector with a label embedding matrix Ul.
The k-th row of Ul is the label embedding of the label k.

wk = Ul.ek. (2)

The dimension of wk is usually much smaller than the num-
ber of labels.

The recurrent layer takes the label embedding of the pre-
viously predicted label, and models the co-occurrence de-
pendencies in its hidden recurrent states by learning non-
linear functions:

o(t) = ho(r(t−1), wk(t)), r(t) = hr(r(t−1), wk(t)) (3)

where r(t) and o(t) are the hidden states and outputs of the
recurrent layer at the time step t, respectively, wk(t) is the
label embedding of the t-th label in the prediction path, and
ho(.), hr(.) are the non-linear RNN functions, which will
be described in details in Sec. 3.1.

The output of the recurrent layer and the image represen-
tation are projected into the same low-dimensional space as
the label embedding.

xt = h(Ux
o o(t) + Ux

I I), (4)

where Ux
o and Ux

I are the projection matrices for recurrent
layer output and image representation, respectively. The
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Figure 4. The architecture of the proposed RNN model for multi-
label classification. The convolutional neural network is employed
as the image representation, and the recurrent layer captures the
information of the previously predicted labels. The output label
probability is computed according to the image representation and
the output of the recurrent layer.

number of columns of Ux
o and Ux

I are the same as the la-
bel embedding matrix Ul. I is the convolutional neural net-
work image representation. We will show in Sec 4.5 that the
learned joint embedding effectively characterizes the rele-
vance of images and labels.

Finally, the label scores can be computed by multiplying
the transpose of Ul and xt to compute the distances between
xt and each label embedding.

s(t) = UT
l xt. (5)

The predicted label probability can be computed using soft-
max normalization on the scores.

3.3. Inference

A prediction path is a sequence of labels
(l1, l2, l3, · · · , lN ), where the probability of each la-
bel lt can be computed with the information of the image I
and the previously predicted labels l1, · · · , lt−1. The RNN
model predicts multiple labels by finding the prediction
path that maximizes the a priori probability.

l1, · · · , lk = arg max
l1,··· ,lk

P (l1, · · · , lk|I)

= arg max
l1,··· ,lk

P (l1|I)× P (l2|I, l1)

· · ·P (lk|I, l1, · · · , lk−1)

. (6)

Since the probability P (lk|I, l1, · · · , lk−1) does not have
Markov property, there is no optimal polynomial algo-
rithm to find the optimal prediction path. We can em-
ploy the greedy approximation, which predicts label l̂t =
argmaxlt P (lt|I, l1, · · · , lt−1) at time step t and fix the la-
bel prediction l̂t at later predictions. However, the greedy
algorithm is problematic because if the first predicted label
is wrong, it is very likely that the whole sequence cannot
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Figure 5. An example of the beam search algorithm with beam
size N = 2. The beam search algorithm finds the best N paths
with the highest probability, by keeping a set of intermediate paths
at each time step and iteratively adding labels these intermediate
paths.

be correctly predicted. Thus, we employ the beam search
algorithm to find the top-ranked prediction path.

An example of the beam search algorithm can be found
in Figure 5. Instead of greedily predicting the most proba-
ble label, the beam search algorithm finds the top-N most
probable prediction paths as intermediate paths S(t) at each
time step t.

S(t) = {P1(t), P2(t), · · · , PN (t)} (7)

At time step t + 1, we add N most probable labels to each
intermediate path Pi(t) to get a total of N ×N paths. The
N prediction paths with highest probability among these
paths constitute the intermediate paths for time step t + 1.
The prediction paths ending with the END sign are added to
the candidate path set C. The termination condition of the
beam search is that the probability of the current intermedi-
ate paths is smaller than that of all the candidate paths. It
indicates that we cannot find any more candidate paths with
greater probability.

3.4. Training

Learning CNN-RNN models can be achieved by us-
ing the cross-entropy loss on the softmax normalization
of score softmax(s(t)) and employing back-propagation
through time algorithm. In order to avoid the gradient van-
ishing/exploding issues, we apply the rmsprop optimization
algorithm [33]. Although it is possible to fine-tune the con-
volutional neural network in our architecture, we keep the
convolutional neural network unchanged in our implemen-
tation for simplicity.

One important issue of training multi-label CNN-RNN
models is to determine the orders of the labels. In the ex-
periments of this paper, the label orders during training are

determined according to their occurrence frequencies in the
training data. More frequent labels appear earlier than the
less frequent ones, which corresponds to the intuition that
easier objects should be predicted first to help predict more
difficult objects. We explored learning label orders by iter-
atively finding the easiest prediction ordering and order en-
sembles as proposed in [28] or simply using fixed random
order, but they do not have notable effects on the perfor-
mance. We also attempted to randomly permute the label
orders in each mini-batch, but it makes the training very
difficult to converge.

4. Experiments

In our experiments, the CNN module uses the 16 lay-
ers VGG network [29] pretrained on ImageNet 2012 clas-
sification challenge dataset [5] using Caffe deep learning
framework [16]. The dimensions of the label embedding
and of LSTM RNN layer are 64 and 512, respectively. We
employ weight decay rate 0.0001, momentum rate 0.9, and
dropout [4] rate 0.5 for all the projection layers.

We evaluate the proposed method on three benchmark
multi-label classification datasets: NUS-WIDE, Microsoft
COCO, and VOC PASCAL 2007 datasets. The evaluation
demonstrates that the proposed method achieves superior
performance to state-of-the-art methods. We also quali-
tatively show that the proposed method learns a joint la-
bel/image embedding and it focuses its attention in different
image regions during the sequential prediction.

4.1. Evaluation Metric

The precision and recall of the generated labels are em-
ployed as evaluation metrics. For each image, we generate
k1 highest ranked labels and compare the generated labels
to the ground truth labels. The precision is the number of
correctly annotated labels divided by the number of gener-
ated labels; the recall is the number of correctly annotated
labels divided by the number of ground-truth labels.

We also compute the per-class and overall precision (C-
P and O-P) and recall scores (C-R and O-R), where the av-
erage is taken over all classes and all testing examples, re-
spectively. The F1 (C-F1 and O-F1) score is the geometrical
average of the precision and recall scores. We also compute
the mean average precision (MAP)@N measure [34].

4.2. NUS-WIDE

NUS-WIDE dataset [2] is a web image dataset that con-
tains 269,648 images and 5018 tags from Flickr. There are a
total of 1000 tags after removing noisy and rare tags. These
images are further manually annotated into 81 concepts by

1For RNN model, we set the minimum prediction length during beam
search to ensure that at least k labels are predicted.



Tags80: clouds, sun, sunset

Tags1k: blue, clouds, sun, sunset, 
light, orange, photographer

Prediction 80: clouds, sky, sun, sunset
Prediction 1k:  nature, sky, blue, clouds,
red, sunset , yellow, sun, beatiful, 
sunrise, cloud

Tags: car, person, luggage, backpack,
umbrella, cup, truck

Predictions: person, car, truck, 
backpack

Figure 6. One example image from NUS-WIDE (left) and MS-
COCO(right) datasets, the ground-truth annotations and our
model’s predictions.

Method C-P P-R C-F1 O-P O-R O-F1 MAP@10

Metric Learning [19] - - - - - 21.3 -
Multi-edge graph [23] - - - 35.0 37.0 36.0 -

KNN [2] 32.6 19.3 24.3 42.9 53.4 47.6 -
Softmax 31.7 31.2 31.4 47.8 59.5 53.0 -

WARP [9] 31.7 35.6 33.5 48.6 60.5 53.9 -
Joint Embedding [38] - - - - - - 40.3

CNN-RNN 40.5 30.4 34.7 49.9 61.7 55.2 56.1

Table 1. Comparisons on NUS-WIDE Dataset on 81 concepts for
k = 3.

human annotators. An example of the annotations and pre-
dictions for both of label set is shown in the left side of
Fig. 6. The quality of 81-tag annotations is relatively high,
while the 1000-tag annotations are very noisy. In Fig. 6,
we can find some tags with duplicate semantics, such as
“cloud” and “clouds”, some completely wrong tags, such as
“photographer”, and some tags that are too general to have
specific meanings, such as “beautiful”.

We first evaluate the proposed method on less noisy
81 concepts labels. We compare the proposed method
with state-of-the-art methods including K nearest neighbor
search [2], softmax prediction, WARP method [9], metric
learning [19], and joint embedding [38] in Table 1. Since
there is less noise in 81 concepts labels, all methods achieve
fairly good performance. Although we do not fine-tune
our convolutional neural network image representation, the
proposed RNN framework outperforms the state-of-the-art
methods. In particular, we find the CNN-RNN framework
achieves 8% higher precision, because it is capable of ex-
ploiting the label correlation to filter out the labels that can
not possibly exist together.

We also compare RNN model with softmax, DSLR [22],
and WARP models on the more challenging 1000-tag label
set in Table 2. The prediction accuracy of all the meth-
ods are very low, because the labels on this dataset are
very noisy, but the proposed method still outperforms all
the baseline methods. We find the proposed method cannot

Method C-P P-R C-F1 O-P O-R O-F1 MAP@10

Softmax 14.2 18.6 16.1 17.1 28.8 21.5 24.3
DLSR [22] - - - 20.0 25.0 22.4 -

WARP 14.5 15.9 15.2 18.3 30.8 22.9 24.8

CNN-RNN 19.2 15.3 17.1 18.5 31.2 23.3 26.6

Table 2. Comparisons on NUS-WIDE Dataset on 1000 tags for
k = 10.

Method C-P P-R C-F1 O-P O-R O-F1 MAP@10

Softmax 59.0 57.0 58.0 60.2 62.1 61.1 47.4
WARP 59.3 52.5 55.7 59.8 61.4 60.7 49.2

Binary cross-entropy 59.3 58.6 58.9 61.7 65.0 63.3 -

No RNN 65.3 54.5 59.3 68.5 61.3 65.7 57.2
CNN-RNN 66.0 55.6 60.4 69.2 66.4 67.8 61.2

Table 3. Comparisons on MS-COCO Dataset for k = 3.

distinguish gender-related labels such as “actor” and “ac-
tress”, because our convolutional neural network is trained
on ImageNet, which does not have the annotation for this
task. More multi-label prediction examples can be found in
the supplemental materials.

4.3. Microsoft COCO

Microsoft COCO (MS-COCO) dataset [21] is an image
recognition, segmentation, and captioning dataset. It con-
tains 123 thousand images of 80 objects types with per-
instance segmentation labels. Among those images, 82783
images are utilized as training data, and 40504 images are
employed as testing data. We utilize the object annotations
as the labels. An example of the annotations and predictions
of the MS-COCO dataset is shown in the right of Fig. 6. An
interesting property of the MS-COCO dataset is that most
images in this dataset contain multiple objects, and these
objects usually have strong co-occurrence dependencies.
For example, “baseball glove” and “sport ball” have high
co-occurrence probability, while “zebra” and “cat” never
appear together.

We compare the softmax, multi-label binary cross en-
tropy, and WARP [9] models with the CNN-RNN model in
Table 3. Since the number of the objects per image varies
considerably in this dataset, we do not set the minimum
length of the prediction path during beam search. It can
be observed that the proposed method achieves much better
performance both in terms of overall precision and recall. It
has a slightly lower per-class recall because it may output
less than k labels for an image and it usually chooses not to
predict the small objects that have little co-occurrence de-
pendencies with other larger objects. We also replace the re-
current layer with a linear embedding layer in the proposed
architecture and evaluate the performance. We find that re-
moving the recurrent layer significantly affects the recall of
the multi-label classification.

The per-class precision and recall of the proposed frame-



Figure 7. The per-class precision and recall of the RNN model on MS-COCO dataset.

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mAP

INRIA [14] 77.2 69.3 56.2 66.6 45.5 68.1 83.4 53.6 58.3 51.1 62.2 45.2 78.4 69.7 86.1 52.4 54.4 54.3 75.8 62.1 63.5
CNN-SVM [27] 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.4 71.8 73.9

I-FT [36] 91.4 84.7 87.5 81.8 40.2 73.0 86.4 84.8 51.8 63.9 67.9 82.7 84.0 76.9 90.4 51.5 79.9 54.1 89.5 65.8 74.4
HCP-1000C [36] 95.1 90.1 92.8 89.9 51.5 80.0 91.7 91.6 57.7 77.8 70.9 89.3 89.3 85.2 93.0 64.0 85.7 62.7 94.4 78.3 81.5

CNN-RNN 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

Table 4. Classification results (AP in %) comparison on PASCAL VOC 2007 dataset.

work is shown in Fig. 7. We find the proposed framework
performs very well on large objects, such as “person”, “ze-
bra”, and “stop sign”, and the objects with high dependen-
cies with other objects or the scene, such as “sports bar”
and “baseball glove”. It performs very poorly on small ob-
jects with little dependencies with other objects, such as
“toaster” and “hair drier”, because the global convolutional
neural network image features have limited discriminative
ability to recognize small objects. There is zero prediction
for “toaster” and “hair drier”, resulting in zero precision and
recall scores for these two labels.

The relationship between recall and bounding box area
on Microsoft COCO dataset is shown in Fig. 8. We can
observe that the recall is the generally higher as the object
is larger, unless the object is so large that it almost fill the
whole image, where some important information might lose
during the image cropping process in CNN.

4.4. PASCAL VOC 2007

PASCAL Visual Object Classes Challenge (VOC)
datasets [6] are widely used as the benchmark for multil-
abel classification. VOC 2007 dataset contains 9963 im-
ages divided into train, val and test subsets. We conduct
our experiments on trainval/test splits (5011/4952 images).
The evaluation is Average Precision (AP) and mean of AP
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Figure 8. The relationship between recall and bounding box area
on Microsoft COCO dataset.

(mAP).
The comparison to state-of-the-art methods is shown in

Table 4. INRIA [14] is based on the transitional feature
extraction-coding-pooling pipeline. CNN-SVM [27] di-
rectly applies SVM on the OverFeat features pre-trained
on ImageNet. I-FT [36] employs the squared loss func-
tion on the shared CNN features on PASCAL VOC for
multi-label classification. HCP-1000C [36] employs region



Label Nearest Neighbors

glacier arctic, norway, volcano, tundra, lakes
sky nature, blue, clouds, landscape, bravo

sunset sun, landscape, light, bravo, yellow
rail railway, track, locomotive, tracks, steam
cat dog, bear, bird, hair drier, toaster
cow horse, sheep, bear, zebra, elephant

Table 5. Nearest neighbors for label embeddings of 1k labels of
NUS-WIDE and MS-COCO datasets

hawk, eagle, fauna, 
wind, bird

glacier, volcano, cli�,
arctic, lakes

portraits, costume, 
female, asian, hat

portraits,people, street, 
hospital, woman

landscape, mountain, 
nature, mountains,  bravo

bird, hwak, nature,
bravo, birds

Im
ag

es

KNN

Classi-
�cation

Figure 9. Nearest neighbor labels and top classification predictions
by softmax model for three query images of 1000 label set on
NUS-WIDE dataset.

proposal information to fine-tune the CNN features pre-
trained on ImageNet 1000 dataset, and ac hives better per-
formance than the methods that do not exploit region infor-
mation. The proposed CNN-RNN method outperforms the
I-FT method by a large margin, and it also performs better
than HCP-1000C method, although the RNN method does
not take the region proposal information into account.

4.5. Label embedding

In addition to being able to generate multiple labels, the
CNN-RNN model also effectively learns a joint label/image
embedding. The nearest neighbors of the labels in the em-
bedding space for NUS-WIDE and MS-COCO, are shown
in Table 5. We can see that a label is highly semantically
related to its nearest-neighbor labels.

Fig. 9 shows the nearest neighbor labels for images on
NUS-WIDE 1000-tag dataset computed according to label
embedding wk and image embedding Ux

I I . In the joint em-
bedding space, an image and its nearest neighbor labels are
semantically relevant. Moreover, we find that compared to
the top-ranked labels predicted by classification model, the
nearest neighbor labels are usually more fine-grained. For
example, the nearest neighbor labels “hawk” and “glacier”
are more fine-grained than “bird” and “landscape”.

Original Image Initial Attention Attention after first word

Figure 10. The attentional visualization for the RNN multi-label
framework. This image has two ground-truth labels: “elephant”
and “zebra”. The bottom-left image shows the framework’s atten-
tion in the beginning, and the bottom-right image shows its atten-
tion after predicting “elephant”.

4.6. Attention Visualization

It is interesting to investigate how the CNN-RNN frame-
work’s attention changes when predicting different labels.
We visualize the attention of the RNN multi-label model
with Deconvolutional networks [40] in Fig. 10. Given an
input image, the attention of the RNN multilabel model at
each time step is the average of the synthesized image of
all the label nodes at the softmax layer using Deconvolu-
tional network. The ground truth labels of this image are
“elephant” and “zebra”. (Notice that the visualization of
attention does not utilize the ground truth labels) At the be-
ginning, the attention visualization shows that the model
looks over the whole image and predicts “elephant”. Af-
ter predicting “elephant”, the model shifts its attention to
the regions of zebra and predicts “zebra”. The visualization
shows that although the RNN framework does not learn an
explicit attentional model, it manages to steer its attention to
different image regions when classifying different objects.

5. Conclusion and Future Work

We propose a unified CNN-RNN framework for multi-
label image classification. The proposed framework com-
bines the advantages of the joint image/label embedding
and label co-occurrence models by employing CNN and
RNN to model the label co-occurrence dependency in a
joint image/label embedding space. Experimental results on
several benchmark datasets demonstrate that the proposed
approach achieves superior performance to the state-of-the-
art methods.

The attention visualization shows that the proposed
model can steer its attention to different image regions when
predicting different labels. However, predicting small ob-
jects is still challenging due to the limited discriminative-
ness of the global visual features. It is an interesting di-
rection to not only predict the labels, but also predict the
segmentation of the objects by constructing an explicit at-
tention model. We will investigate that in our future work.
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