Layered Object Detection for Multi-Class Image Segmentation

Sam Hallman

Deva Ramanan

UC Irvine

- PASCAL competition
- 20 object categories + "background"

Desired result

Felzenszwalb, Gorelick, McAllester, & Ramanan PAMI 09

Layered Representation

Model each detection in "2.1D": detections ordered by *depth*

Desired result

Related work

- Related work combining segmentation and recognition
 - Biasing segmentation output based on object models
 [Yu et al. 03, Ramanan 06, Kumar et al. 05]
 - Iterating between bottom-up and top-down cues [Leibe et al. 04, Tu et al. 05]
- Related work on layers
 - Work in the video domain [Wang & Adelson 94, Jojic & Frey 01, Kumar et al. 04]
 - Some work in image domain [Gao et al. 07, Nitzberg et al. 93]

Issues

- Need detector thresholds
- Need comparable confidence scores

Detector calibration Find optimal threshold for pixel labeling

Model

- N = # of detections
- x_i = RGB values for pixel i
- z_i = label for pixel i (1..N or 0 for background)
- θ_n = color model for nth layer

 d_{π} = set of detections with ordering π

product over pixels

$$P(z, x | \theta, d_{\pi}) = \prod_{i} \frac{P(z_{i} | d_{\pi}) P(x_{i} | \theta_{z_{i}})}{\underset{\text{shape color}}{\text{shape color}}}$$

Inference: coordinate descent

$$f(z,\theta) = -\log P(z,x|\theta,d_{\pi})$$

Step 1:
$$\arg \min_{z} f(z, \theta)$$

Step 2: $\arg \min_{\theta} f(z, \theta)$

(per-pixel segmentation given shape prior & color likelihood)

(fit color models to segments and background)

Color models are learned on-the-fly for each detection instance (e.g., people may wear blue or red shirts)

Bottom-up segmentation

Use hierarchical segmentation of Arbelaez, Maire, Fowlkes, Malik (2009) at a threshold which generates ~200 segments per image.

Inference: coordinate descent

$$f(z,\theta) = -\log P(z,x|\theta,d_{\pi})$$

Step 1: $\underset{z \in \mathbb{Z}}{\operatorname{arg\,min}} f(z, \theta)$

Step 2:

 $\arg\min_{\theta} f(z,\theta)$

(per-pixel segmentation given shape prior & color likelihood)

(fit color models to segments and background)

 \mathcal{Z} = set of pixel labelings consistent with superpixel map

person detections

true positives

ground truth segmentations

shape prior for the *person* class

Shape priors (cont'd)

Shape priors (cont'd)

Shape priors (cont'd)

Bicycle part-based priors

Motorcycle part-based priors

Horse part-based prior

Bottle part-based priors

The algorithm

for each ordering π :

find $\arg \max_z P(z, x | \theta, d_{\pi})$ output superpixel labels with most probable π

- There is no secret method for finding π...
 Just try all of them!
- Luckily, the number of permutations to test is usually small.

Results!

PASCAL 2009 Segmentation Challenge

	Mean	Max	Us	Our rank
background	41.2	83.5	78.0	8
aeroplane	18.8	56.3	32.8	7
bicycle	10.4	26.6	29.4	1
bird	11.0	40.6	3.2	17
boat	11.5	36.1	5.0	16
bottle	18.2	46.1	33.1	3
bus	25.5	50.5	43.4	3
car	20.6	42.3	43.8	1
cat	12.6	35.3	8.3	12
chair	4.2	9.1	5.1	9
cow	11.7	33.1	11.9	9
diningtable	9.1	27.0	8.2	11
dog	9.1	24.5	5.6	14
horse	17.5	42.7	21.0	7
motorbike	23.4	56.4	24.4	9
person	20.9	37.5	38.6	1
pottedplant	9.7	37.1	14.6	6
sheep	19.7	43.6	14.8	13
sofa	8.5	21.9	3.5	17
train	19.2	41.0	27.5	7
tv/monitor	22.3	47.8	45.7	2
average	16.4	36.2	23.7	7

Performs well where detector works well (objects with well defined, fairly rigid shapes)

	¬ordering	−color	¬superpixel	¬parts	all	
background	79.37	78.93	78.65	79.62	79.36	1
aeroplane	35.26	32.39	30.61	37.22	35.26	Superpixels really
bicycle	25.46	23.12	20.7	24.58	25.45	heln hikes
bird	2.81	2.78	2.68	2.79	2.81	
boat	9.87	9.16	9.64	9.14	9.87]
bottle	41.44	39.73	41.76	40.19	41.29]
bus	49.83	48.52	48.54	48.72	49.87]
car	46.88	45.66	44.25	46.14	47.03	1
cat	18.4	17.68	16.81	15.06	18.4	1
chair	10.05	9.06	9.57	8.37	10	
cow	17.74	16.83	18.1	15.91	17.77]
diningtable	6.94	6.8	6.79	6.85	7.27]
dog	11.53	10.55	11.18	10.91	11.53]
horse	16.07	14.6	15.33	15.19	16.21	Color helps person
motorbike	25.72	24.38	24.46	24.88	25.62	segmentation
person	36.88	34.98	35.3	32.4	36.81	Segmentation
pottedplant	15.55	14.92	15.17	14.32	15.55	
sheep	21.09	18.77	20.33	17.77	21.1	
sofa	12.63	12.2	12.14	12.05	12.63	Parts provide small
train	28.6	27.43	27.88	27.86	28.6	
tvmonitor	46.41	46.01	46.36	43.67	46.28	put noticeable
average	26.6	25.45	25.53	25.41	26.6	improvement

What aspects of the model are useful?

Does ordering help?

- Default ordering based on detector score works fairly well (after calibration)
- PASCAL segmentation benchmark limitations:
 images often only have a single object
 - scoring is per-class rather than per-instance
 - Ordering between same class detections doesn't affect benchmark score
- We found ordering helped on a subset of PASCAL with overlapping objects

Conclusions

- A simple layered model for compiling multiobject detections into segmentations
 - Deformable shape prior built on part-based detector
 - Per-instance color model
- Provides a globally consistent 2.1D interpretation
- Good performance on PASCAL segmentation benchmark

Thanks!

