
Sequential Convex Approximations to Joint Chance Constrained

Programs: A Monte Carlo Approach

L. Jeff Hong
Department of Industrial Engineering and Logistics Management

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

Yi Yang
Department of Computer Science, University of California, Irvine, CA 92617, U.S.A.

Liwei Zhang
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China

Abstract

When there is parameter uncertainty in the constraints of a convex optimization problem,
it is natural to formulate the problem as a joint chance constrained program (JCCP) which
requires that all constraints be satisfied simultaneously with a given large probability. In this
paper, we propose to solve the JCCP by a sequence of convex approximations. We show that the
solutions of the sequence of approximations converge to a Karush-Kuhn-Tuck (KKT) point of
the JCCP under a certain asymptotic regime. Furthermore, we propose to use a gradient-based
Monte Carlo method to solve the sequence of convex approximations.

1 Introduction

Consider the following optimization problem:

minimize h(x)
subject to c1(x, ξ) ≤ 0, . . . , cm(x, ξ) ≤ 0,

x ∈ X,
(1)

where ξ is a k-dimensional parameter vector, X is a subset of <d, h : <d → < and ci : <d+k → <,

i = 1, . . . , m, are real-valued functions. Furthermore, we assume that h(x) and ci(x, ξ), i = 1, . . . , m,

are convex in x and X is a compact convex set. Then, Problem (1) is a standard constrained

convex optimization problem. It has broad applications in communications and networks, product

design, system control, statistics and finance, and it can be solved efficiently (e.g., see Boyd and

Vandenberghe (2004) for a comprehensive introduction to convex optimization).

In many practical problems, however, the parameter vector ξ of Problem (1) may be uncertain.

If this uncertainty is ignored (e.g., by using the expected values of ξ in the optimization), the

optimal solution obtained by solving Problem (1) may actually be infeasible with a very high
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probability. To illustrate this, we consider a very simple example. We let ξ = (ξ1, . . . , ξm) where

ξ1, . . . , ξm are m independent observations of a standard normal distribution, let X = <, h(x) = x

and ci(x, ξ) = ξi − x for all i = 1, . . . , m. If we ignore the parameter uncertainty by using E(ξ) to

substitute ξ in Problem (1), the optimal solution is x∗ = 0. However, the probability of x∗ = 0

being a feasible solution equals

Pr{c1(x∗, ξ) ≤ 0, . . . , cm(x∗, ξ) ≤ 0} = Pr{x∗ ≥ ξ1} · · ·Pr{x∗ ≥ ξm} = 0.5m,

which is very small when m is large (for instance, it is already less than 0.001 when m = 10).

To consider this parameter uncertainty, we may formulate the problem as

(P)
minimize h(x)
subject to Pr{c1(x, ξ) ≤ 0, . . . , cm(x, ξ) ≤ 0} ≥ 1− α,

x ∈ X.

In Problem (P), we require all m uncertain constraints be satisfied simultaneously with a probability

at least 1−α, where 0 < α < 1 is often set as 0.01, 0.05 or 0.1. Therefore, the solution to Problem

(P) is guaranteed to be a feasible solution to the original Problem (1) with a probability at least

1 − α. Problem (P) is called a joint chance constrained program (JCCP) and the probabilistic

constraint is called a joint chance constraint. When m = 1, the constraint is called a single chance

constraint because it requires only a single constraint to be satisfied with probability 1 − α. For

simplicity of the notation, we let

p(x) = 1− Pr{c1(x, ξ) ≤ 0, . . . , cm(x, ξ) ≤ 0}

and p(x) is the probability that at least a constraint is violated. Then, the joint chance constraint

of Problem (P) becomes p(x) ≤ α.

Many stochastic optimization problems can be formulated as a JCCP. For instance, the reservoir

system design problem of Prékopa et al. (1978) minimizes the total building and penalty costs

while satisfying demands for all sites and all periods with a probability at least 80%, and the cash

matching problem of Dentcheva et al. (2004) maximizes the value of the portfolio at the end of the

planning horizon while covering all scheduled payments with a probability at least 95%. JCCPs

were first introduced and studied by Charnes et al. (1958), Miller and Wagner (1965) and Prékopa

(1970). Since then, they have been studied extensively in the stochastic optimization literature.

For a recent review of the topic, readers are referred to Prékopa (2003).

There are generally two major difficulties in solving a JCCP. First, p(x) may not be a convex

(or quasiconvex) function even though c1(x, ξ), . . . , cm(x, ξ) are all convex in x. Therefore, Problem
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(P) may not be a convex optimization problem even though Problem (1) is. Then, it is difficult to

find a global optimal solution. Second, p(x) generally has no closed form and is typically difficult

to evaluate.

Different approaches have been proposed in the stochastic optimization literature to address

these difficulties. For the convexity of Problem (P), Prékopa (2003) showed that p(x) is quasiconvex

(which implies that Problem (P) is convex) if c1(x, ξ), . . . , cm(x, ξ) are quasiconvex functions of

(x, ξ), and if ξ has a logconcave probability distribution, which includes uniform distribution,

multivariate normal distribution, and many others. Lagoa et al. (2005) showed that an individual

chance constraint in the form of Pr{aT x ≤ b} ≥ 1 − α defines a convex set provided that the

vector (aT , b)T has a symmetric logconcave density with α < 1/2. Henrion (2007) showed that an

individual chance constraint in the form of Pr{ξT q(x) ≤ b} ≥ 1−α defines a convex set provided that

all components of q(x) are nonnegative and convex, α < 1/2, and the vector ξ has a elliptically

symmetric distribution, whose parameters satisfy certain requirements. Henrion and Strugarek

(2008) showed that a joint chance constraint in the form of Pr{gi(x) ≥ ξi, i = 1, . . . , m} ≥ 1 − α

defines a convex set if gi(x) is (−ri)-concave and ξi, i = 1, . . . , m, are independent random variables

with (ri + 1)-decreasing densities for some ri > 0 for sufficiently small α values.

When p(x) is not quasiconvex (or at least not verifiable), many convex conservative approxi-

mations of p(x) have been proposed, e.g., the quadratic approximation of Ben-Tal and Nemirovski

(2000), the conditional value-at-risk (CVaR) approximation of Rockafellar and Uryasev (2000), and

the Bernstein approximation of Nemirovski and Shapiro (2006). These approximations typically

find feasible but suboptimal solutions to Problem (P). Furthermore, most of these approximations

only work on single chance constraints instead of a joint chance constraint. Therefore, one has

to approximate the joint chance constraint by a set of individual chance constraints. A popular

choice is to use Boole’s inequality, which guarantees the satisfaction of the joint chance constraint

if Pr{ci(x, ξ) ≥ 0} ≥ 1 − αi, i = 1, . . . , m, and α1 + · · · + αm = α (e.g., Nemirovski and Shapiro

2006). However, it makes the solution even more conservative.

To evaluate p(x), Monte Carlo simulations are often used when the closed form of p(x) is not

available. When the chance constraint is approximated by functions that are analytically tractable,

e.g., the quadratic approximation or the Bernstein approximation, evaluations of these functions

are easy. The resulted problems can be solved directly using standard nonlinear optimization

algorithms. When the chance constraint is approximated by functions that are not analytically
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tractable, e.g., the CVaR approximation, Monte Carlo simulations are also used to evaluate these

functions (Rockafellar and Uryasev 2000).

Luedtke and Ahmed (2008) studied the sample-average approximation of the JCCPs. Their

goal is to determine the sample size and appropriate probability requirement such that one can

find a feasible solution of the original JCCP and also bound the optimality gap. Luedtke et al.

(2007) considered linear programs with joint chance constraints and showed that the problems can

be reformulated into mixed integer programs. They further demonstrated that the mixed integer

programs can be solved efficiently when only the right-hand side vector is random.

Another approach to solving JCCPs is to use the scenario approach, which solves the following

problem:
minimize h(x)
subject to ci(x, ξ`) ≤ 0, i = 1, . . . , m, ` = 1, . . . , n,

x ∈ X,
(2)

where ξ1, ξ2 . . . , ξn are independent observations of ξ that are often generated from a Monte Carlo

simulation. Problem (2) is a convex optimization problem and analytically tractable. The critical

issue is how to determine the sample size n to ensure that the joint chance constraint is satisfied

with a high probability. Calafiore and Campi (2005 and 2006) and De Farias and Van Roy (2004)

studied this issue independently, and Erdgoǧan and Iyengar (2006) further extended the earlier

results to situations where the distribution of ξ is ambiguous. The scenario approach is simple to

understand and easy to implement. However, its also has several drawbacks. First, Problem (2) is

also a conservative approximation to the original JCCP; it finds feasible but suboptimal solutions.

Second, the solutions found by the scenario approach are not stable. They can be drastically

different when different sets of samples are used. Third, the performance of the approach cannot

be improved by acquiring more samples of ξ, which is in contrast to many other Monte Carlo

algorithms. Indeed, increasing sample size will make Problem (2) more conservative and may lead

to worse solutions. Therefore, the performance of the approach cannot be improved when an ample

amount of computational time is available.

In this paper, we propose a new approach to solving Problem (P). We first show that the function

p(x) can be represented as a limit of a DC function (i.e., difference of two convex functions). Then

we use an ε-approximation to approximate Problem (P). We show that, as ε goes down to zero,

the optimal solutions (either global optimal or KKT points) of the approximation converge to the

optimal solutions of Problem (P), respectively. To solve the ε-approximation problem, we propose
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to solve a sequence of convex optimization problems. We show that the sequence of solutions

converge to a KKT point of the ε-approximation problem under moderate conditions. We also

propose to use a Monte Carlo method to solve the sequence of convex optimization problems. We

show that the solution of the Monte Carlo method converges with probability 1 as the sample size

goes to infinity, and the sample problem can be solved efficiently using a gradient approach.

Compared to other approaches in the literature, our approach has several advantages. First,

it converges to a KKT point of Problem (P), while nearly all other methods are conservative

approximations whose solutions do not satisfy any optimality conditions of Problem (P). When

the JCCP is convex (even though it may not be verifiable), our approach converges to the global

optimal solution while other methods cannot. Second, our approach directly handles the joint

chance constraint without breaking it into multiple single chance constraints. Therefore, it avoids

the extra conservativeness introduced by using Boole’s inequality.

Our approach also has several drawbacks compared to other approaches in the literature. First,

it is computationally slow. Generally, Monte Carlo methods are slower than deterministic approx-

imations because the sample problem is either of a large size or the functions need to estimated

repeatedly. Our approach requires to solve a sequence of sample problems. Therefore, it can only

solve problems with a small or moderate size, e.g., problems with less than 100 dimensions. Second,

our approach requires the full joint distribution of the uncertain parameters in order to generate

Monte Carlo samples. However, specifying a full joint distribution for a large number of parameters

are often difficult in practice. When the distribution of ξ is ambiguous, our approach cannot be

applied. To solve JCCPs with ambiguous distributions, many robust optimization approaches have

been proposed in the literature, e.g., Ben-Tal and Nemirovski (2000), Bertsimas and Sim (2004)

and Chen et al. (2009).

The rest of the paper is organized as follows. We provide a new formulation of the JCCP in

Section 2, and show how the formulation can be solved by sequential convex approximations in

Section 3. In Section 4, we propose an efficient Monte Carlo algorithm to solve the sequence of

convex approximations. The numerical results are reported in Section 5, followed by the conclusions

and future research in Section 6. Some lengthy proofs are included in the electronic companion to

this paper.
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2 A DC Formulation

Let c(x, ξ) = max{c1(x, ξ), . . . , cm(x, ξ)}. Note that c(x, ξ) is a convex function of x since ci(x, ξ),

i = 1, . . . , m, are all convex in x. Then,

p(x) = 1− Pr{c1(x, ξ) ≤ 0, . . . , cm(x, ξ) ≤ 0} = 1− Pr{c(x, ξ) ≤ 0} = Pr{c(x, ξ) > 0}.

By doing so, we convert a joint chance constraint to a single chance constraint. We can do this

in this paper because we do not need to exploit certain special structures of ci(x, ξ). For many

papers that require ci(x, ξ) be a linear function of x or ξ and exploit this linearity, e.g., Ben-Tal

and Nemirovski (2000) and Nemirovski and Shapiro (2006), c(x, ξ) is no longer linear when m > 1

and, thus, handling a joint chance constraint is significantly more difficult than handling a single

chance constraint. For us, however, handling a joint chance constraint is as difficult as handling a

single chance constraint.

A major difficulty of solving Problem (P) is that p(x) is generally not a convex function of

x even though c(x, ξ) is convex in x. In the literature, many algorithms have been proposed to

approximate p(x) by a conservative function p̃(x), i.e., p̃(x) ≥ p(x) for all x ∈ X. Then, the solution

to

minimize h(x), subject to p̃(x) ≤ α, x ∈ X

is a feasible solution of Problem (P). If p̃(x) is close to p(x), then the solution is a good approxi-

mation to the optimal solution of Problem (P). If p̃(x) is a convex function, then the approximated

problem is a convex program that may be easier to solve.

In this section, we first introduce the CVaR approximation of Rockafellar and Uryasev (2000),

which is the “best” convex conservative approximation (Nemirovski and Shapiro 2006). Based on

the CVaR approximation, we propose another conservative approximation to p(x), called the DC

approximation. We then study the properties of the DC approximation.

2.1 CVaR Approximation

Note that p(x) = Pr{c(x, ξ) > 0} = E
[
1(0,+∞)(c(x, ξ))

]
, where 1A(z) denotes the indicator function

of set A that equals to 1 if z ∈ A and 0 if z 6∈ A. Since the indicator function 1(0,+∞)(z) is nonconvex

(see the left panel of Figure 1), one way to approximate p(x) is to find a convex approximation ψ(z)

of 1(0,+∞)(z) such that ψ(z) ≥ 1(0,+∞)(z) for any z ∈ <. Then, p̃(x) = E [ψ(c(x, ξ))] is a convex

conservative approximation of p(x). For instance, both the CVaR approximation of Rockafellar
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and Uryasev (2000) and the Bernstein approximation of Nemirovski and Shapiro (2006) use this

approach.
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Figure 1: The CVaR approximation to the indicator function 1(0,+∞)(z).

Among all convex conservative approximations of this kind, the CVaR approximation is known

to be the “best” (Nemirovski and Shapiro 2006). It uses

ψ(z, t) =
1
t
[t + z]+

to approximate 1(0,+∞)(z), where t > 0 and a+ = max{a, 0} (see the right panel of Figure 1), and

let

p̃(x) = inf
t>0

E [ψ(c(x, ξ), t)] = inf
t>0

1
t
E

[
[t + c(x, ξ)]+

]
.

It can be shown that the new constraint p′(x) ≤ α is equivalent to CVaR1−α(c(x, ξ)) ≤ 0 (Ne-

mirovski and Shapiro 2006), where

CVaR1−α(z) = inf
τ∈<

{
τ +

1
α

E
[
[z − τ ]+

]}
.

This is why this approximation is called the CVaR approximation. The CVaR approximation

problem can be solved using a Monte Carlo method. Rockafellar and Uryasev (2000) provided

an approach that solves the problem with a single chance constraint and Nemirovski and Shapiro

(2006) showed that the Boole’s inequality can be used to extend it to JCCPs. Hong and Liu (2009)

provided a gradient-based Monte Carlo algorithm that directly solves the CVaR approximations of

JCCPs.

2.2 DC Approximation

Although the CVaR approximation may be the “best” convex conservative approximation of p(x),

it is clear that ψ(z, t) is not a good approximation to the indicator function 1(0,+∞)(z) from Figure

1. The difference between the two functions grows unboundedly as z → +∞.
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Figure 2: The DC approximation to the indicator function 1(0,+∞)(z).

To find a better approximation to p(x), we first define

φ(z, t) =
1
t
[z]+

for any t > 0. Note that φ(z, t) can be obtained by shifting ψ(z, t) to the right side by a distance

of t (see the left panel of Figure 2). Then, π(z, t) = ψ(z, t) − φ(z, t) is a better approximation of

1(0,+∞)(z) than ψ(z, t) is (see the right panel of Figure 2). Since both ψ(z, t) and φ(z, t) are convex

functions of z, π(z, t) is a DC function of z. Furthermore, since π(z, t) ≥ 1(0,+∞)(z) for all z ∈ <
when t > 0, π(z, t) is also a conservative approximation of 1(0,+∞)(z) when t > 0.

Let g1(x, t) = E[t + c(x, ξ)]+ and g2(x) = g1(x, 0). Note that both functions are convex in x.

Let

p̃(x, t) = E [π(c(x, ξ), t)] =
1
t

[g1(x, t)− g2(x)] . (3)

Then, p̃(x, t) is a conservative DC approximation of p(x) for any t > 0. Let

p̃(x) = inf
t>0

p̃(x, t). (4)

Then, p̃(x) is the best conservative approximation among all p̃(x, t) when t > 0. In this paper, we

suggest to solve

(DC) minimize h(x), subject to p̃(x) ≤ α, x ∈ X.

We call Problem (DC) as the DC approximation of Problem (P).

2.3 Equivalence of the JCCP and DC Approximation

In this subsection, we prove that Problem (DC), which is a conservative approximation of Problem

(P), is indeed equvialent to Problem (P). We make the following assumptions.
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Assumption 1. The set X is a compact and convex subset of <d, and the support of ξ, denoted

as Ξ, is a closed subset of <k. For any ξ ∈ Ξ, h(x) and ci(x, ξ), i = 1, . . . , m, are continuously

differentiable and convex in x for any x ∈ O where O is a bounded open set such that X ⊂ O.

Assumption 1 is used to clearly define Problem (P).

Assumption 2. There exists a random variable Ki with E(Ki) < +∞ such that

|ci(x1, ξ)− ci(x2, ξ)| ≤ Ki ‖x1 − x2‖

for any x1, x2 ∈ O and any i = 1, 2, . . . , m.

Let K =
∑m

i=1 Ki. Assumption 2 implies that |c(x1, ξ)− c(x2, ξ)| ≤ K ‖x1 − x2‖ and E(K) <

+∞. The Lipschitz continuity of c(x, ξ) is critical in the analysis of differentiability of E [c(x, ξ)].

It is a common assumption used to handle the differentiability of an expectation (e.g., Broadie and

Glasserman (1996), Hong (2009) and Hong and Liu (2009)).

Assumption 3. For any x ∈ O, c(x, ξ) is differentiable with respect to x w.p.1.

To verify Assumption 3, we only consider the situation where ξ is a continuous random vector,

because the following Assumption 4 is typically violated if ξ is discrete. By Assumption 1, ci(x, ξ)

is continuously differentiable for all i = 1, . . . , m. Therefore, if Pr{ci(x, ξ) = cj(x, ξ)} = 0 for

any x ∈ O and any i, j = 1, . . . , m with i 6= j, c(x, ξ) is differentiable with respect to x w.p.1.

In the electronic companion to this paper, we discuss how to verify and satisfy Assumption 3 if

Pr{ci(x, ξ) = cj(x, ξ)} 6= 0.

Let F (t, x) = Pr{c(x, ξ) ≤ t} be the cumulative distribution function of c(x, ξ). We make the

following assumption on the continuity of F (t, x).

Assumption 4. There exists a certain δ > 0 such that F (t, x) is continuously differentiable when

(t, x) ∈ (−δ,+δ)×O.

Since p(x) = 1 − F (0, x), Assumption 4 implies that p(x) is continuously differentiable. Fur-

thermore, note that ∂tF (t, x) is the density function of c(x, ξ). Therefore, Assumption 4 implies

that c(x, ξ) has a continuous density in (−δ,+δ) for any x ∈ O.

Assumption 5. Let Ω0 = {x ∈ X : p(x) ≤ α} and ΩI
0 = {x ∈ X : p(x) < α}. Then Ω0 = cl ΩI

0.
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Note that Ω0 is the set of feasible solutions to Problem (P). Assumption 5 is an assumption

on the constraint qualification of Problem (P). When Ω0 is a convex set, it is implied by the

widely used Slater’s condition (e.g., Boyd and Vandenberghe 2004). Assumption 5 is a commonly

used condition in nonlinear programming, especially for numerical methods that approximate the

optimal solutions by sequences of points in ΩI , e.g., the barrier function method (see, for instance,

Zangwill (1969) and Bazaraa et al. (1993)). We need this assumption because the method we

propose in Section 3 is also such a numerical method. More discussions on Assumption 5 along

with a counter-example are presented in the electronic companion to this paper.

Then, we have the following lemmas that are used repeatedly in the rest of the paper.

Lemma 1. Suppose that Assumption 4 is satisfied. For any x ∈ X, p̃(x, t) is nondecreasing in t

when t > 0.

Proof. For any t > 0 and any z ∈ <,

π(z, t) = ψ(z, t)− φ(z, t) =
[
1 +

1
t
z

]
· 1(−t,0](z) + 1(0,+∞)(z). (5)

For any t1 > t2 > 0 and any z ∈ <,

π(z, t1)− π(z, t2) =
[
1 +

1
t1

z

]
· 1(−t1,−t2](z) +

[
1
t1
− 1

t2

]
z · 1(−t2,0](z) ≥ 0.

Therefore, π(z, t) is nondecreasing in t when t > 0. Since p̃(x, t) = E [π(c(x, ξ), t)], then p̃(x, t) is

also nondecreasing in t when t > 0.

Lemma 2. Suppose that Assumptions 1 to 4 are satisfied. Then, g1(x, t) is differentiable in O ×
(−δ, δ), and

∇xg1(x, t) = E
[∇xci∗(x, ξ) · 1(−t,+∞) (c(x, ξ))

]
,

∂

∂t
g1(x, t) = 1− F (−t, x),

where i∗ = argmaxi=1,...,m {ci(x, ξ)}.

Proof. By Assumptions 1 to 3, c(x, ξ) = maxi=1,...,m ci(x, ξ) is differentiable with respect to x w.p.1

and ∇xc(x, ξ) = ∇xci∗(x, ξ) w.p.1 when x ∈ O. Note that g1(x, t) = E
{
[t + c(x, ξ)]+

}
. Since

f(x) = (t + x)+ is differentiable except at x = −t and f ′(x) = 1(−t,+∞)(x) when x 6= −t, and
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Pr{c(x, ξ) = t} = 0 when t ∈ (−δ,+δ) by Assumption 4, then by Proposition 1 of Broadie and

Glasserman (1996), g1(x, t) is differentiable in O × (−δ,+δ) and

∇xg1(x, t) = E
[∇xci∗(x, ξ) · 1(−t,+∞) (c(x, ξ))

]
,

∂

∂t
g1(x, t) = E

[
1(−t,+∞) (c(x, ξ))

]
= Pr{c(x, ξ) > −t} = 1− F (−t, x).

This concludes the proof of the lemma.

Remark 1. Since g2(x) = g1(x, 0), Lemma 2 also implies that g2(x) is differentiable and ∇g2(x) =

E
[∇xci∗(x, ξ) · 1(0,+∞) (c(x, ξ))

]
.

Then, we have the following theorem on the equivalence of Problem (DC) and Problem (P).

Theorem 1. Suppose that Assumptions 1 to 4 are satisfied. Then, Problem (DC) is equivalent to

Problem (P).

Proof. By Lemma 1, p̃(x) = inft>0 p̃(x, t) = limt↘0 p̃(x, t), where t ↘ 0 denotes that t decreasingly

goes to 0. By Lemma 2,

lim
t↘0

p̃(x, t) = lim
t↘0

1
t

[g1(x, t)− g1(x, 0)] =
∂

∂t
g1(x, 0) = 1− F (0, x) = p(x).

Then, p̃(x) = p(x). Therefore, Problem (DC) is equivalent to Problem (P). This concludes the

proof of the theorem.

Theorem 1 is an important result of this paper. It shows that solving Problem (DC) is equivalent

to solving Problem (P). In the rest of this paper, we study how to solve Problem (DC).

2.4 ε-Approximation

Note that p̃(x) = limt↘0 p̃(x, t) by Lemma 1. However, p̃(x, t) is not well defined at t = 0. Therefore,

we approximate p̃(x) by p̃(x, ε) = 1
ε [g1(x, ε)− g2(x)] for a small ε ∈ (0, δ) where δ is defined in

Assumption 4, and approximate Problem (DC) by

(Pε)
minimize h(x)
subject to g1(x, ε)− g2(x) ≤ εα,

x ∈ X.

By Theorem 1, Problem (DC) is equivalent to Problem (P). Therefore, Problem (Pε) is also an

approximation to Problem (P). In the rest of this subsection, we show that Problem (Pε) is a good

approximation to Problem (P).
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Let Ω(ε) = {x ∈ X : g1(x, ε) − g2(x) ≤ εα} denote the feasible set of Problem (Pε). Then,

we have the following lemma on the relationship between Ω(ε) and Ω0, which is the feasible set of

Problem (P).

Lemma 3. Suppose that Assumptions 1 to 5 are satisfied. Then, limε↘0 Ω(ε) = Ω0.

Proof. By Lemma 1, p̃(x, t) is nondecreasing with respect to t. Then, for any ε2 ≥ ε1 > 0,

1
ε1

[g1(x, ε1)− g2(x)] ≤ 1
ε2

[g1(x, ε2)− g2(x)] ,

which in turn implies that Ω(ε2) ⊂ Ω(ε1). Therefore, it follows from Exercise 4.3 of Rockafellar

and Wets (1998) that limε↘0 Ω(ε) exists.

We first prove that limε↘0 Ω(ε) ⊂ Ω0. For any x ∈ limε↘0 Ω(ε), there exists εk ↘ 0 and

xk ∈ Ω(εk) such that xk → x. Since xk ∈ Ω(εk), then xk ∈ X and

1
εk

[g1(xk, εk)− g2(xk)] ≤ α. (6)

By Taylor expansion and Lemma 2, we have

g1(xk, εk) = g1(xk, 0) +
∂

∂t
g1(xk, ε̃k)εk = g1(xk, 0) + [1− F (−ε̃k, x)] εk (7)

for some ε̃k ∈ (0, εk). Combining Equations (6) and (7) and taking k → +∞, we have x ∈ X

and 1 − F (0, x) ≤ α, which is equivalent to p(x) ≤ α. Therefore, x ∈ Ω0, which implies that

limε↘0 Ω(ε) ⊂ Ω0.

We then prove that limε↘0 Ω(ε) ⊃ Ω0. For any x ∈ ΩI
0, since p(x) = limε↘0

1
ε [g1(x, ε)− g2(x)]

and p(x) < α, then 1
ε [g1(x, ε) − g2(x)] < α for some ε > 0 small enough. Therefore, x ∈ Ω(ε). So

we obtain that lim
ε↘0

Ω(ε) ⊃ ΩI
0. Since Ω(ε) is a closed set for any ε > 0, then limε↘0 Ω(ε) is also a

closed set. Then, by Assumption 5, limε↘0 Ω(ε) ⊃ Ω0.

Therefore, limε↘0 Ω(ε) = Ω0. This concludes the proof of the lemma.

For sets A,B ⊂ <d, let dist(x,A) = infx′∈A ‖x−x′‖ denote the distance from x ∈ <d to A, and

D(A,B) = sup
x∈A

dist(x,B)

denote the deviation of the set A from the set B (Shapiro and Ruszczyński 2008). Let S(ε) and

ν(ε) be the set of optimal solutions and the optimal value of Problem (Pε), S0 and ν0 be the set of

optimal solutions and the optimal value of Problem (P). Then, we have the following theorem.
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Theorem 2. Suppose that Assumptions 1 to 5 are satisfied. Then, limε↘0D(S(ε), S0) = 0 and

limε↘0 ν(ε) = ν0.

Proof. Let h(x) = h(x) + IΩ0(x) and hε(x) = h(x) + IΩ(ε)(x), where IA(x) = 0 if x ∈ A and

IA(x) = +∞ if x 6∈ A. By Lemma 3, limε↘0 Ω(ε) = Ω0. Then, by Proposition 7.4(f) of Rockafellar

and Wets (1998), we have that IΩ(ε)(·) epi-converges to IΩ0(·) as ε ↘ 0. Since h(·) is continuous,

we have that hε(·) epi-converges to h(·) as ε ↘ 0. As Ω(ε) and Ω0 are compact, we have that hε(·)
and h(·) are lower semi-continuous and proper1. Then, by Theorem 7.33 of Rockafellar and Wets

(1998), we have ν(ε) → ν0 and

lim sup
ε↘0

S(ε) ⊂ S0. (8)

Since S(ε) and S0 are subsets of the compact set X, they are uniformly compact. By the dis-

cussions in Example 4.13 of Rockafellar and Wets (1998), we have that Equation (8) implies

limε↘0D(S(ε), S0) = 0. This concludes the proof of the theorem.

Theorem 2 shows that the optimal solutions of Problem (Pε) provide good approximations to

the optimal solutions of Problem (P) when ε is close enough to 0.

However, Problem (Pε) is generally a non-convex problem. Therefore, finding an optimal so-

lution to the problem may be difficult. We often only find KKT points of Problem (Pε) (as the

method introduced in Section 3 does). In the rest of this subsection, we analyze the convergence

of the KKT points of Problem (Pε) to the KKT points of Problem (P) as ε ↘ 0.

Let Λ0 and Λ(ε) denote the sets of KKT pairs of Problems (P) and (Pε), respectively, namely

Λ0 =

{
(x, λ) ∈ Ω0 ×<+ :

0 ∈ ∇h(x) + λ ∇p(x) + NX(x),

λ [p(x)− α] = 0

}
,

and

Λ(ε) =





(x, λ) ∈ Ω(ε)×<+ :
0 ∈ ∇h(x) + λ

[∇xg1(x, ε)−∇g2(x)
ε

]
+ NX(x),

λ

[
g1(x, ε)− g2(x)

ε
− α

]
= 0





,

where NX(x) denotes the normal cone to X at x (Bonnans and Shapiro 2000), and the differen-

tiability of p(x), g1(x, ε) and g2(x) is ensured by Assumption 4 and Lemma 2. Then, we have the

following theorem that shows the relation between Λ0 and Λ(ε).
1A function f : <d → < ∪ {±∞} is lower semi-continuous at x0 ∈ <d if f(x0) ≤ lim infx→x0 f(x). It is lower

semi-continuous if it is lower semi-continuous at every x ∈ <d. It is a proper function if f(x) > −∞ for every x ∈ <d

and there is at least one point x ∈ <d such that f(x) < +∞.
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Theorem 3. Suppose that Assumptions 1 to 5 are satisfied. Then, lim supε↘0 Λ(ε) ⊂ Λ0.

Proof. For any (x, λ) ∈ lim supε↘0 Λ(ε), there exists (xk, λk) ∈ Λ(εk) such that (xk, λk) → (x, λ).

The inclusion (xk, λk) ∈ Λ(εk) means

0 ∈ ∇h(xk) + λk

[∇xg1(xk, εk)−∇g2(xk)
εk

]
+ NX(xk), (9)

λk

[
g1(xk, εk)− g2(xk)

εk
− α

]
= 0, λk ≥ 0. (10)

By Lemma 2, ∂
∂tg1(x, t) = 1−F (−t, x) when x ∈ X and t ∈ (−δ, δ). Since F (t, x) is continuously

differentiable by Assumption 4, then ∇x
∂
∂tg1(x, t) = −∇xF (−t, x) is continuous in t and x. Then,

by Exercise 6.24 of Marsden and Hoffman (1993),

∂

∂t
∇xg1(x, t) = ∇x

∂

∂t
g1(x, t) = −∇xF (−t, x).

Since g2(x) = g1(x, 0), by the mean-value theorem, we have

∇xg1(xk, εk)−∇g2(xk)
εk

=
∂

∂t
∇xg1(x, ε̃k) = −∇xF (−ε̃k, x)

for some ε̃k ∈ (0, εk), k = 1, 2, · · · . Since F (t, x) is continuously differentiable by Assumption 4,

then we have that

lim
k→+∞

∇xg1(xk, εk)−∇g2(xk)
εk

= − lim
k→+∞

∇xF (−ε̃k, x) = −∇xF (0, x) = ∇p(x). (11)

Furthermore, by Lemma 2,

lim
k→+∞

g1(xk, εk)− g2(xk)
εk

= 1− F (0, x) = p(x). (12)

By Lemma 3, we know that Ω(ε) increases as ε ↘ 0 and limε↘0 Ω(ε) = Ω0. Therefore, Ω(ε) ⊂ Ω0

for ε > 0. It follows from xk ∈ Ω(εk) and xk → x that x ∈ Ω0. By Proposition 6.6 of Rockafellar

and Wets (1998),

lim sup
xk→x

NX(xk) = NX(x) (13)

when x, xk ∈ X. Then, by taking k → +∞ in Equations (9) and (10), we obtain that (x, λ) ∈ Λ0.

This concludes the proof of the theorem.

To obtain a stronger convergence result of the KKT pairs, we make the following assumption.
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Assumption 6. Suppose that the following regularity condition holds for every feasible point x ∈
Ω0:

0 ∈ λ∇p(x) + NX(x)

λ ≥ 0, λ[p(x)− α] = 0

}
=⇒ λ = 0. (14)

Assumption 6 is a constraint qualification of the constraints x ∈ X and p(x) − α ≤ 0, which

ensures the existence of KKT pairs. It is a frequently used condition for a set involving the abstract

constraint x ∈ X, see, for instance, the basic constraint qualification defined in Theorem 6.14 of

Rockafellar and Wets (1998). Let Σ be the set of all stationary points of Problem (P). Then,

Σ ⊂ X is a compact set. For any x ∈ Σ, it follows from Exercise 6.39 and Example 6.40 of

Rockafellar and Wets (1998) that Condition (14) is Robinson constraint qualification, and it is

Mangasarian-Fromovitz (MF) constraint qualification when X is a compact polyhedron.

Then, we have the following theorem that is stronger than Theorem 3. The proof of the theorem

is provided in the electronic companion to this paper.

Theorem 4. Suppose that Assumptions 1 to 6 are satisfied and X ⊂ <d is a compact polyhedron.

Then, limε↘0D(Λ(ε),Λ0) = 0.

Theorems 3 and 4 show that the cluster points of the sequence of KKT pairs of Problem (Pε) are

KKT pairs of Problem (P). Therefore, the KKT points of Problem (Pε) are good approximations

to the KKT points of Problem (P) when ε is small. In the rest of this paper, we consider how to

find a KKT point of Problem (Pε).

3 Sequential Convex Approximations

Problem (Pε) is a DC program, because the left-hand side of the constraint g1(x, ε)−g2(x)−εα ≤ 0

is a DC function of x. To solve the problem, we propose to use a sequence of convex approximations.

In Section 3.1, we first introduce an algorithm to solve this type of DC programs. Then, in Section

3.2, we show how to apply the algorithm to solve Problem (Pε). The algorithm starts with an

initial feasible solution of Problem (Pε), we show how to find a good initial solution in Section 3.3.

3.1 Algorithm SCA

Consider the nonlinear optimization problem of the form

(DCP)
minimize h(x)
subject to g1(x)− g2(x) ≤ 0,

x ∈ X,
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where X ⊂ <d is a nonempty convex compact set, h : <d → <, gi : <d → <, i = 1, 2, are real-valued

continuously differentiable and convex functions in a bounded open set O ⊃ X. Note that Problem

(Pε) is an example of Problem (DCP).

Let Ω = {x ∈ X : g1(x)− g2(x) ≤ 0} and

Ωy = {x ∈ X : g1(x)− [g2(y) +∇g2(y)T (x− y)] ≤ 0}

for any y ∈ X. Note that g2(y) +∇g2(y)T (x− y) defines a tangent plane of g2(x) at x = y. Since

g2(x) is convex, we have for any y ∈ X,

g2(x) ≥ g2(y) +∇g2(y)T (x− y), ∀x ∈ X,

which implies

g1(x)− g2(x) ≤ g1(x)− [g2(y) +∇g2(y)T (x− y)]. (15)

Then, Ωy ⊂ Ω for any y ∈ X. Furthermore, since g1(x) − [g2(y) + ∇g2(y)T (x − y)] is a convex

function of x, then Ωy is a convex subset of Ω for any y ∈ X. Define Problem (CP(y)) as

(CP(y)) minimize {h(x) : x ∈ Ωy}.

Then, CP(y) is a convex conservative approximation of Problem (DCP) for any y ∈ X. We suggest

using the following algorithm to solve Problem (DCP).

Algorithm SCA

Step 0 Give x0 ∈ Ω and set k = 0.

Step 1 Stop if xk satisfies the KKT condition of Problem (DCP).

Step 2 Solve CP(xk) to obtain its optimal solution xk+1.

Step 3 Set k = k + 1 and go to Step 1.

A similar algorithm was proposed by Smola et al. (2005) as an approach to solving DC programs

in the form of Problem (DCP). However, they did not provide rigorous analysis on the convergence

of the algorithm, although they claim that the algorithm can find a KKT point of Problem (DCP).

In the rest of this subsection, we analyze the properties of the algorithm and prove the claim of

Smola et al. (2005) in a rigorous way.
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Property 1. If {xk} is generated by Algorithm SCA for Problem (DCP) starting from x0 ∈ Ω,

then {xk} ⊂ Ω.

Proof. Note that x1 ∈ Ωx0 , and Ωy ⊂ Ω for any y ∈ X by Equation (15). Then x1 ∈ Ω. Therefore,

by the principle of induction, we have {xk} ⊂ Ω.

Property 2. If {xk} is generated by Algorithm SCA for Problem (DCP) starting from x0 ∈ Ω,

then {h(xk)} is a convergent non-increasing sequence.

Proof. Since Ωxk
is a convex compact set and h is convex, CP(xk) has an nonempty compact

solution set and xk+1 ∈ argmin{h(x) : x ∈ Ωxk
}. Noting that xk ∈ Ωxk

for every k ≥ 1, we have

that h(xk+1) ≤ h(xk). As h(·) is continuous and X is compact, we obtain that infk{h(xk)} is finite,

which is greater than or equal to infx∈X h(x), and limk→+∞ h(xk) = infk{h(xk)}.

The next property states that the cluster points of {xk} are all KKT points of Problem (DCP).

To prove it, we need a constraint qualification. We say that Slater’s condition holds at y ∈ Ω if

intΩy 6= ∅. Note that Slater’s condition is the most commonly used constraint qualification in

convex optimization (Boyd and Vandenberghe 2004). The proof of the property is quite lengthy,

so we include it in the online companion to this paper.

Property 3. Let {xk} be the sequence of solutions generated by Algorithm SCA for Problem (DCP)

starting from x0 ∈ Ω. Suppose that x̄ is a cluster point of {xk} satisfying Slater’s condition. Then,

x̄ is a KKT point of Problem (DCP). Moreover, if h is strictly convex in O, then {xk} converges

to a KKT point of Problem (DCP).

By Properties 1 to 3, we see that Algorithm SCA has many desired properties. In the next

subsection, we show how to apply it to solve Problem (Pε).

3.2 Algorithm SCA for Problem (Pε)

Note that Problem (Pε) is exactly in the form of Problem (DCP), where we only need to define

g1(x) = g1(x, ε)− εα. Then we can apply Algorithm SCA to solve Problem (Pε) directly.

By Assumption 1 and the conclusions of Lemma 2, we can verify that Problem (Pε) satisfies

the definition of Problem (DCP) when ε is small enough. Let {xk} be the sequence of solutions

generated by Algorithm SCA for Problem (Pε) starting from x0 ∈ Ω(ε). By Properties 1 and 2,
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we have that {xk} ⊂ Ω(ε) and {h(xk)} is a convergent non-increasing sequence when ε is small

enough.

To apply Property 3 to Problem (Pε), however, we need to prove that all cluster points of {xk}
satisfy Slater’s condition. Let X̄ denote a cluster point of {xk}. Since g1(x, ε) and g2(x) are both

continuous in x, then Ω(ε) is a closed set. Since {xk} ⊂ Ω(ε), we have x̄ ∈ Ω(ε). Then, we only

need to prove that intΩ(ε)x̄ 6= ∅, which is implied by the conclusion of the following lemma.

Lemma 4. Suppose that Assumptions 1 to 6 are satisfied. Then, int Ω(ε)y 6= ∅ for any y ∈ Ω(ε)

when ε > 0 is small enough.

Proof. By contradiction. Suppose that there exist εi ↘ 0 and yi ∈ Ω(εi) such that int Ω(εi)yi = ∅.
Note that

Ω(ε)yi = {x ∈ X : g1(x, εi)− [g2(yi) +∇g2(yi)(x− yi)]− εiα ≤ 0}.

Then, the equality int Ω(εi)yi = ∅ implies g1(yi, εi)− g2(yi)− εiα = 0 and

yi ∈ argminx∈X {g1(x, εi)− [g2(yi) +∇g2(yi)(x− yi)]− εiα} . (16)

As X is a convex compact set, the optimization problem of Equation (16) is a convex problem.

Then, we have from the necessary optimality condition that

−[∇xg1(yi, εi)−∇g2(yi)] ∈ NX(yi), g1(yi, εi)− g2(yi)− εiα = 0,

or equivalently

−∇xg1(yi, εi)−∇xg1(yi, 0)
εi

∈ NX(yi),
g1(yi, εi)− g1(yi, 0)

εi
− α = 0. (17)

Since {yi} ⊂ X and X is compact, {yi} has a cluster point, say ȳ ∈ Ω0. Assume that there is a

subsequence {ykj
} such that ykj

→ ȳ. Letting j → +∞ and by Equations (11) to (13), we have

−∇p(ȳ) ∈ NX(ȳ), p(ȳ)− α = 0, ȳ ∈ Ω0,

which implies that λ = 1 is a solution of

0 ∈ λ∇p(x) + NX(x), λ ≥ 0, λ[p(x)− α] = 0

when x = ȳ ∈ Ω0. Then, it contradicts Assumption 6. This concludes the proof of the lemma.
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Note that Lemma 4 shows that int Ω(ε)y 6= ∅ for any y ∈ Ω(ε). Then, it also holds for y = x̄.

Therefore, the conclusions of Property 3 also hold when Algorithm SCA is applied to solve Problem

(Pε) when ε is small enough.

For completeness, we summarize the three properties for Problem (Pε) in the following theorem.

Theorem 5. Let {xk} be the sequence of solutions generated by Algorithm SCA for Problem (Pε)

starting from x0 ∈ Ω(ε). Suppose that Assumptions 1 to 6 are satisfied. Then, for any ε > 0 small

enough, {xk} ⊂ Ω(ε), {h(xk)} is a convergent non-increasing sequence, all cluster points of {xk}
are KKT points of Problem (Pε). Furthermore, {xk} converges to a KKT point of Problem (Pε) if

h is strictly convex.

3.3 Initial Solutions for Problem (Pε)

To apply Algorithm SCA, we need an initial solution x0 ∈ Ω(ε). In this subsection, we provide two

natural choices.

In the first choice, we let Ω0(ε) = {x ∈ X : g1(x, ε) ≤ εα}. Note that g2(x) = E [c(x, ξ)]+ ≥ 0

for all x ∈ X. Then, Ω0(ε) ⊂ Ω(ε). Furthermore, Ω0(ε) is a convex set since g1(x, ε) is a convex

function of x when x ∈ O. Then,

minimize h(x), subject to x ∈ Ω0(ε)

is a convex optimization problem. Let xε ∈ argmin {h(x) : x ∈ Ω0(ε)}, we have xε ∈ Ω(ε).

In the second choice, we let ΩCVaR = {x ∈ X : CVaR1−α(c(x, ξ)) ≤ 0}. By the discussions in

Section 2.1,

ΩCVaR =
{

x ∈ X : inf
t>0

1
t
g1(x, t) ≤ α, x ∈ X

}
.

Let xCVaR ∈ argmin {h(x) : x ∈ ΩCVaR}, which is the optimal solution of the CVaR approximation

of Rockafellar and Uryasev (2000). Let ε∗ = q1−α(c(xCVaR, ξ)), which is the 1 − α quantile of

c(xCVaR, ξ). By Pflug (2000), ε∗ > 0 and

inf
t>0

1
t
g1(xCVaR, t) =

1
ε∗

g1(xCVaR, ε∗).

Then, xCVaR ∈ {x ∈ X : g1(x, ε∗) ≤ ε∗α}. Since g2(x) ≥ 0, then

xCVaR ∈ {x ∈ X : g1(x, ε∗)− g2(x) ≤ ε∗α} = Ω(ε∗).
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By Lemma 1, Ω(ε∗) ⊂ Ω(ε) for any 0 < ε ≤ ε∗. Then, xCVaR ∈ Ω(ε) for any 0 < ε ≤ ε∗. Therefore,

one may first solve the CVaR approximation and find xCVaR and then select ε ∈ (0, ε∗]. Then,

xCVaR may be used as an initial solution to Algorithm SCA.

When we let x0 = xCVaR, the sequence of solutions {xk} generated by Algorithm SCA are

improving and at least as good as the CVaR approximation, which is the “best” convex conservative

approximation. Furthermore, {xk} converges to the set of KKT points of Problem (Pε) by Theorem

5, which converges to the set of KKT points of Problem (P) as ε ↘ 0 by Theorem 4. Compared

to other approximation algorithms, e.g., CVaR approximation, quadratic approximation, Bernstein

approximation and scenario analysis, which only find a (good) feasible solution to Problem (P),

our algorithm has more desirable properties. If Problem (P) is convex (even though it may not be

verifiable), our algorithm converges to its global optimal solution, while others do not.

4 A Gradient-based Monte Carlo Method

To implement Algorithm SCA, we need to repeatedly solve

minimize h(x)
subject to g1(x, ε)− [

g2(y) +∇g2(y)T (x− y)
] ≤ εα,

x ∈ X
(18)

for different y values. Though Problem (18) is a convex optimization problem, it is difficult to solve

because we generally do not have the closed form expressions of g1(x, ε), g2(x) and ∇g2(y). To

overcome this difficulty, we propose to use a Monte Carlo method.

For simplicity of the notation, we let

g(x) = g1(x, ε)− [
g2(y) +∇g2(y)T (x− y)

]
.

Then, by the definitions of g1, g2 and Lemma 2, we have

g(x) = E
{
[c(x, ξ) + ε]+

}−
[
E

{
[c(y, ξ)]+

}
+ E

{[∇xci∗(y, ξ) · 1(0,+∞) (c(y, ξ))
]}T (x− y)

]
, (19)

where c(x, ξ) = max{ci(x, ξ)} and i∗ = argmaxi=1,...,m {ci(y, ξ)}. Let ξ1, . . . , ξn denote an in-

dependent and identically distributed (i.i.d.) sample of ξ. Let ḡ2(y) = 1
n

∑n
`=1 c(y, ξ`) and

∇̄g2(y) = 1
n

∑n
`=1∇xci∗(y, ξ`) · 1(−t,+∞) (c(y, ξ`)). Then, a natural estimator of g(x) is

ḡ(x) =
1
n

n∑

`=1

[c(x, ξ`) + ε]+ − [
ḡ2(y) + ∇̄g2(y)T (x− y)

]
. (20)

We suggest solving
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(MC) minimize h(x), subject to ḡ(x) ≤ εα, x ∈ X,

and using its optimal solution to approximate the optimal solution of Problem (18). Let S and ν∗

denote the set of optimal solutions and the optimal objective value of Problem (18), and Ŝn and ν̂∗n

denote the set of optimal solutions and the optimal objective value of Problem (MC). Then there

are two critical issues when we use this approximation. First, do Ŝn and ν̂∗n converge to S and ν∗?

Second, how do we solve Problem (MC) efficiently?

To answer the first question, we have the following theorem.

Theorem 6. Suppose that Assumptions 1 to 6 are satisfied. When ε > 0 is small enough,

D(Ŝn, S) → 0 w.p.1 and ν̂∗n → ν∗ w.p.1 as n →∞.

Proof. Note that we may write g(x) and ḡ(x) as

g(x) = E
{

[c(x, ξ) + ε]+ − [c(y, ξ)]+ − [∇xci∗(y, ξ) · 1(0,+∞) (c(y, ξ))
]T (x− y)

}
, (21)

and

ḡ(x) =
1
n

n∑

`=1

{
[c(x, ξ`) + ε]+ − [c(y, ξ`)]

+ − [∇xci∗(y, ξ`) · 1(0,+∞) (c(y, ξ`))
]T (x− y)

}
.

Then, ḡ(x) is the sample average approximation of g(x). By the strong law of large numbers

(Durrett 2005), ḡ(x) → g(x) w.p.1 for any fixed x ∈ X. Furthermore, since the integrand of

Equation (21) is a convex function of x for any ξ ∈ Ξ when x ∈ O, by Theorem 6.38 of Shapiro

and Ruszczyński (2008), ḡ(x) converges to g(x) uniformly on X w.p.1 as n →∞, i.e.,

sup
x∈X

|ḡ(x)− g(x)| → 0 w.p.1 as n →∞.

Also, by Lemma 4, Slater’s condition holds for Problem (18) when Assumptions 1 to 6 are satisfied

and ε > 0 is small enough. Then, by Theorem 4.5 of Shapiro and Ruszczyński (2008) and the

discussions followed the theorem, the conclusions of our theorem hold.

To answer the second question, we propose two methods to solve Problem (MC). In the first

method, based on Equation (20) and the definition of c(x, ξ), we reformulate Problem (MC) as

minimize h(x)
subject to ci(x, ξ`) ≤ z`, i = 1, . . . , m, ` = 1, . . . , n,

1
n

∑n
`=1 z` −

[
ḡ2(y) + ∇̄g2(y)T (x− y)

] ≤ εα,
z` ≥ 0, ` = 1, . . . , n,
x ∈ X.

(22)
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Note that Problem (22) is similar to the formulation of the sample CVaR problem of Rockafellar

and Uryasev (2000). It is a convex optimization problem. Furthermore, it is a linear program if

ci(x, ξ) are linear functions of x for all i = 1, . . . , m. However, Problem (22) is often slow to solve

because of the large numbers of decision variables and constraints, especially when the sample size

n is large.

To efficiently solve Problem (MC) when n is large, we propose a second method. By Equation

(19) and Lemma 2,

∇g(x) = E
[∇xcj∗(x, ξ) · 1(−ε,+∞)(c(x, ξ))

]− E
[∇xci∗(y, ξ) · 1(0,+∞)(c(y, ξ))

]
,

where j∗ = argmaxj=1,...,m {cj(x, ξ)} and i∗ = argmaxi=1,...,m {ci(y, ξ)}. Then, ∇g(x) can be esti-

mated by

∇̄g(x) =
1
n

n∑

`=1

[∇xcj∗(x, ξ`) · 1(−ε,+∞) (c(x, ξ`))−∇xci∗(y, ξ`) · 1(0,+∞) (c(y, ξ`))
]
.

Although g(x) is differentiable in O, ḡ(x) is not when ξ1, . . . , ξn are given. It is only piecewise

differentiable. At the points where ḡ(x) is differentiable, ∇ḡ(x) = ∇̄g(x); at the points where

ḡ(x) is not differentiable, ∇̄g(x) is a subgradient of ḡ(x). Therefore, one may use a subgradient-

based algorithm (see, for instance, Freund (2004)) to solve Problem (MC). In this paper, however,

we suggest using an approximation method. Since ḡ(x) converges to g(x) which is continuously

differentiable as n →∞, we may approximate ∇̄g(x) as a smooth function when n is large, and use

∇̄g(x) as its gradient. Then, we can use gradient-based algorithms to solve Problem (MC) directly.

Note that this method can also be viewed as directly solving Problem (18) with estimated g(x) and

∇g(x).

When we use the gradient-based method to solve Problem (MC), the samples are only used to

compute ḡ(x) and ∇̄g(x), which is an O(n) operation. The method is generally much faster than

the first method that solves Problem (22). Hong and Liu (2009) compared the two methods for the

CVaR approximation problem through numerical examples. They reported that the two methods

find solutions with similar quality, but the gradient-based method is at least an order-of-magnitude

faster when n is of moderate or large size, e.g., n ≥ 2000. In our numerical experiments, we observe

good performances of the gradient-based method as well.
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5 Numerical Illustration

In this section, we consider two JCCP problems, a norm optimization problem and a network

optimization problem. We use them to illustrate the performances of our method, and compare

our method to the CVaR approximation and the scenario approach.

5.1 A Norm Optimization Problem

Let x = (x1, . . . , xd)T denote a d-dimensional vector in <d, and let ξ = (ξ1, . . . , ξm), with ξi =

(ξi1, . . . , ξid)T for any i = 1, . . . , m, be a d × m matrix of random variables. Let ‖x‖1 and ‖x‖
denote the 1-norm and 2-norm of x respectively, i.e., ‖x‖1 =

∑d
j=1 |xj | and ‖x‖ =

(∑d
j=1 x2

j

)−1/2
,

and let ξi ◦ x = (ξi1x1, . . . , ξidxd)
T denote the Hadamard product (or entrywise product) of ξi and

x. We are interested in solving the following problem:

maximize ‖x‖1

subject to Pr {‖ξi ◦ x‖ ≤ 10, i = 1, . . . , m} ≥ 1− α,
xj ≥ 0, j = 1, . . . , d.

(23)

We may reformulate Problem (23) as

minimize −∑d
j=1 xj

subject to Pr
{∑d

j=1 ξ2
ijx

2
j ≤ 100, i = 1, . . . , m

}
≥ 1− α,

xj ≥ 0, j = 1, . . . , d.

(24)

Note that Problem (24) is a JCCP as defined in Problem (P).

Let ci(x, ξ) =
∑d

j=1 ξ2
ijx

2
j − 100 for all i = 1, . . . , m. For any x 6= 0, ci(x, ξ) is a continuous

random variable and ci(x, ξ) = cj(x, ξ) with probability 0. Therefore, Assumption 3 can be satisfied

easily. When x = 0, ci(x, ξ) = −100 for all i = 1, . . . , m. By the definition of differentiability, for

any j = 1, . . . , d,

∂

∂xj
c(0, ξ) = lim

δ→0

1
δ

[c(ejδ, ξ)− c(0, ξ)] = lim
δ→0

1
δ

max
i=1,...,m

(
ξ2
ijδ

2
)

= lim
δ→0

max
i=1,...,m

ξ2
ij · δ = 0,

where ej denotes the ith column of a d × d identity matrix. Therefore, c(x, ξ) is differentiable at

x = 0 for any ξ and Assumption 3 is satisfied.

In the rest of this subsection, we apply Algorithm SCA with the gradient-based Monte Carlo

method to solve this problem.

5.1.1 Independent Case

We consider the case where ξij , i = 1, . . . , m and j = 1, . . . , d, are independent and identically

distributed standard normal random variables. We will call this case independent case in the rest
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of this section. Note that convexity of Problem (23) in this situation is not clear. However, by

symmetry, the optimal solution satisfies x1 = · · · = xd. Then,

Pr





d∑

j=1

ξ2
ijx

2
j ≤ 100, i = 1, . . . , m



 =


Pr



x2

1

d∑

j=1

ξ2
1j ≤ 100








m

.

Note that
∑d

j=1 ξ2
1j follows a chi-square distribution with d degrees of freedom. Let Fχ2

d
(·) denote

its distribution function. Then, the joint chance constraint of Problem (24) is equivalent to

Fχ2
d

(
100
x2

1

)
≥ (1− α)1/m .

Let 1 − β = (1− α)1/m and let F−1
χ2

d
(·) denote the inverse distribution function of a chi-square

distribution with d degrees of freedom. Then, it is clear that the optimal solution x∗ of Problem

(24) is

x∗1 = · · ·x∗d =
10

F−1
χ2

d
(1− β)

.

We apply our gradient-based Monte Carlo method directly to solve Problem (24) without exploring

its special structure (e.g., the independence of ξ), and we use x∗ as a benchmark to evaluate the

performances of our method.

We set d = 10, m = 10 and α = 0.1. Then, the optimal solution of Problem (24) is x∗1 = · · · =
x∗d = 2.08 and the optimal objective value is f∗ = −20.82. We set ε = 0.052 and use a sample

size n = 10000. We use both xCVaR and xε as initial solutions to compare their performances, and

stop the algorithm if the difference between the objective values of two consecutive iterations is

less than or equal to 0.01. We implement the algorithm in Matlab and use Matlab’s own nonlinear

optimization solver fmincon to solve the optimization problem in each iteration with the estimated

constraint values and estimated gradients. The programs were run on a desktop computer with

Intel Duo Core CPU (3.16GHz, 3.16GHz) and 4 GB of RAM.

Although our algorithm uses Monte Carlo samples, we find the performances of the algorithm

are very stable. We run the algorithm 100 replications, it always converges to similar solutions. We

report the typical performances of the algorithm in Figure 3. In the left panel of Figure 3, we plot

the objective values of all iterations. From the plot, we can see that the algorithm converges to the

optimal objective value from both xCVaR and xε, even though the convexity of the problem is not
2Based on the convergence analysis, we may want to set ε small to reduce the bias. However, extremely small

ε may cause numerical problems and may require longer time to solve the subproblem in each iteration. Given the
error in Monte Carlo estimation, we do not suggest setting ε extremely small. Finding the optimal setting of ε is an
important problem for future research.
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Figure 3: Performance of Algorithm SCA for Independent Case

clear. Furthermore, we can see that xCVaR is a better initial solution, since the algorithm converges

faster from it than from xε. In the right panel of Figure 3, we plot the values of left-hand side of

the joint chance constraint, estimated using the sample, for all iterations. From the plot, we see

that the joint chance constraint becomes tight when our algorithm stops, while it is not tight at xε

and xCVaR. The algorithm typically requires about 20 iterations to converge when xCVaR is used

as the initial solution and about 35 iterations when xε is used. The CPU time of each iteration is

on average 6.8 seconds with a range of 4.4 to 12.2 seconds.

5.1.2 Dependent Case

We also considered the case where ξij , i = 1, . . . , m and j = 1, . . . , d, are dependent. We let ξij

be a normal random variable with mean j/d and variance 1, Cov(ξij , ξi′j) = 0.5 when i 6= i′ and

Cov(ξij , ξi′j′) = 0 when j 6= j ′. We will call this case dependent case in the rest of this subsection.

Then, the joint chance constraint of Problem (24) can no longer be converted to a single chance

constraints and the optimal solution is no longer known. However, we can still apply our method

to solve the problem. With the same setting of the parameters as in the independent case, we

report the performances of the algorithm in Figure 4. From the plots, we can see that changing the

dependence structure of ξ does not alter the performances of our algorithm. Both initial solutions

lead the algorithm to converge to the same objective value and the joint chance constraint becomes

tight when the algorithm stops. The number of iterations and the CPU time in this case are also

similar to the ones in the independent case.
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Figure 4: Performance of Algorithm SCA for Dependent Case

5.1.3 Scenario Approach

We also implement the scenario approach for this problem with d = m = 10 and α = 0.1. By

Calafiore and Campi (2006), we let the sample size equal to 1038. Then, by the formulation of

Problem (2), we need to solve an optimization problem with 10380 constraints. We also use Matlab’s

nonlinear optimization solver fmincon to solve the problem. We run the algorithm 100 replications.

To our surprise, the problem can be solved very efficiently (0.74 seconds on average) even though

there are more than 10000 constraints. This is because the number of active constraints is only

about 10 for all the replications that we have tried. However, the solutions are not stable, i.e.,

they are drastically different from replication to replication due to the randomness in the sample.

For the independent case, the average objective value is -17.6 with the best being -18.6 and the

estimated left-hand side value of the joint chance constraint is in the range of 0.982 to 0.999. For

the dependent case, the average objective value is -15.7 with the best being -16.7 and the estimated

left-hand side value of the joint chance constraint being in the range of 0.984 to 0.999. For both

cases, the solutions found by the scenario approach are too conservative, and they are significantly

worse than the solutions found by the CVaR approximation and our method, even though it is the

fastest among all three.

5.2 A Network Optimization Problem

A generalized network flow problem (GNFP) is an extension of the classical network flow problem.

In a GNFP, the flow on an arc is subject to change. If we use xij to denote the flow on arc eij
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when the flow leaves node i, then the flow will become ηijxij when it arrives at node j, where

0 ≤ ηij ≤ 1 is a parameter indicating the changing rate. The GNFP has many useful applications.

For example, in telecommunication, it models the packet loss on an unreliability transmission link;

in production planning, it models the yield rate when one material is converted to another material.

In our computational experiments, we consider a GNFP for electricity distribution where ηij is used

to model the power loss incurred on a transmission line (Jensen and Bard 2003).

In the problem, there are three electricity generating stations that serve ten different areas.

Each station has a different generating cost and a capacity, and each area has a demand. The

electricity transmission from a station to an area or to another station is subject to a random

percentage loss, which is denoted by ηij . We model ηij by a beta distribution, whose mean and

variance depend on the distance between i and j, and 0 ≤ ηij ≤ 1. The problem is to use the

minimum cost to serve all areas where the probability of under-supply for any area or generating

station is below a certain bound.

Let ci, `i and ui denote the marginal generation cost, the minimum generation amount, and

the capacity at station i, respectively, let dk denote the demand at area k, and let xi, yik and zij

denote the electricity generated at station i, the electricity transmitted from station i to area k,

and the electricity transmitted from station i to station j, respectively, for all i, j = 1, 2, 3, i 6= j,

and k = 1, . . . , 10. Note that xi, yik and zij are decision variables. Then, the problem can be

formulated as a JCCP as follows:

minimize
∑3

i=1 cixi

subject to Pr

{
xi +

∑
j 6=i ηjizji ≥

∑10
k=1 yik +

∑
j 6=i zij , i = 1, 2, 3,

∑
i ηikyik ≥ dk, k = 1, . . . , 10,

}
≥ 1− α

`i ≤ xi ≤ ui, yik ≥ 0, zij ≥ 0, i, j = 1, 2, 3, i 6= j, k = 1, . . . , 10.

For the test problem we considered, we set α = 0.1 and use a sample size of 10000. We compare

the CVaR approximation and our method, and run both algorithms 100 times. The (estimated)

optimal cost from the CVaR approximation is 2.60× 106; while the (estimated) optimal cost from

our method is 2.07× 106, which is roughly a 20% reduction of from the CVaR solution.
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6 Conclusion and Future Research

In this paper, we propose a sequential convex approximation algorithm that directly solves the

stochastic optimization problems with a joint chance constraint. In each iteration of the algorithm,

it solves a convex optimization problem using a Monte-Carlo method. We have shown that the

algorithm finds a KKT point in the limit if the sample size of the Monte Carlo method goes to

infinity and the parameter ε goes down to zero. Among the algorithms that have been proposed

to solve this type of problems, to the best of our knowledge, our algorithm is the first one that has

provable convergence to the set of KKT points. It is conceptually more attractive than conservative

convex approximation algorithms and the scenario approach which find (good) feasible solutions

that, nevertheless, satisfy no optimality conditions.

To apply this algorithm for practical problems, especially large-scale practical problems, there

are several impediments. First, the algorithm is generally slower than other convex approximation

algorithms, because it needs to solve a sequence of convex optimization problems, and because it

uses a Monte Carlo method in each iteration. How to speed up the algorithm is a very important

topic for future research. Second, our method requires the full joint distribution of the uncertain

parameters in order to generate Monte Carlo samples. However, specifying a full joint distribution

for a large number of parameters are often very challenging in practice. Different robust optimiza-

tion algorithms have been proposed to address this issue. A future research topic is how to apply

our algorithm under the robust optimization framework to find better solutions.
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Electronic Companion

A Discussions on Assumption 3

Without loss of generality, we consider m = 2 and c(x, ξ) = max{c1(x, ξ), c2(x, ξ)}. When m > 2, we

can verify the assumption by iteratively considering two functions at a time. For instance, when m =

3, we can first consider max{c1(x, ξ), c2(x, ξ)} and then consider max{max{c1(x, ξ), c2(x, ξ)}, c3(x, ξ)}.
In the following three situations, Assumption 3 may be satisfied. In the first situation, c1(x, ξ)−

c2(x, ξ) is a continuous random variable. For instance, when c1(x, ξ) and c2(x, ξ) are independent

continuous random variables, c1(x, ξ)− c2(x, ξ) is a continuous random variable. In this situation,

Pr{c1(x, ξ) = c2(x, ξ)} = 0. Because c1(x, ξ) and c2(x, ξ) are differentiable with respect to x for all

ξ ∈ Ξ by Assumption 1, c(x, ξ) = max{c1(x, ξ), c2(x, ξ)} is differentiable w.p.1 in this situation and

Assumption 3 is satisfied.

In the second situation, c1(x, ξ)− c2(x, ξ) = β for some constant β 6= 0. For instance, c1(x, ξ)−
c2(x, ξ) = b1 − b2 at x = 0 if c1(x, ξ) = ξT

1 x + b1 and c2(x, ξ) = ξT
2 x + b2, and c1(x, ξ)− c2(x, ξ) =

(a1−a2)x+(b1− b2) if c1(x, ξ) = a1x+ b1 + ξ and c2(x, ξ) = a2x+ b2 + ξ. In this situation, because

β 6= 0, Pr{c1(x, ξ) = c2(x, ξ)} = 0 and Assumption 3 is satisfied based on the same analysis in the

first situation.

In the third situation, c1(x, ξ) − c2(x, ξ) = 0. For instance, c1(x, ξ) − c2(x, ξ) = 0 at x = 0

if c1(x, ξ) = ξT
1 x and c2(x, ξ) = ξT

2 x. By Assumption 4, Pr{c1(x, ξ) = 0} = 0 and Pr{c2(x, ξ) =

0} = 0. Then, in this situation, Pr{c1(x, ξ) = γc2(x, ξ)} = 0 for any γ > 0 and γ 6= 1. Note that

c2(x, ξ) ≤ 0 is equivalent to γc2(x, ξ) ≤ 0. We may pre-process all the constraints that correspond

to this situation by multiplying different constants on their left-hand sides. Then, for all the newly

defined constraints, we have Pr{ci(x, ξ) = cj(x, ξ)} = 0 for all i 6= j and, hence, Assumption 3 is

satisfied based on the same analysis in the first situation.3

Although we have considered the three situations where ci(x, ξ)− cj(x, ξ) is either a continuous

random variable or a constant, one may construct examples where ci(x, ξ) = cj(x, ξ) with a certain

probability between 0 or 1 at certain x values. In such a situation, one can approximate c(x, ξ) by

δ log
[∑m

i=1 eci(x,ξ)/δ
]
, which is differentiable with respect to x, with a small δ > 0. By Rockafellar

3We want to point out that, in this situation, it may still be possible to prove the assumption by using the
definition of differentiability in some cases without using pre-processing (see, for instance, the example in Section 5
at x = 0).
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(1970), when δ > 0,

c(x, ξ) ≤ δ log

[
m∑

i=1

e
1
δ
ci(x,ξ)

]
≤ c(x, ξ) + δ log m. (25)

Therefore, this approximation has a small error if δ is a small positive value. Once the algorithm

moves to other points, Assumption 3 may be satisfied.

We may also use the approximation in Equation (25) on all x ∈ X. Then, Assumption 3 is

no longer necessary. However, there will be an approximation error. How to quantify the error is

beyond the scope of this paper. Nevertheless, it is an interesting problem and should be studied in

the future.

B Discussions on Assumption 5

To better understand Assumption 5, we consider a general constraint set of the form Ω = {x ∈
X : g(x) ≤ 0}, where g : <n → < is a real-valued function, Ω is a nonconvex set when g is not

convex. Further, let ΩI = {x ∈ X : g(x) < 0}. Many numerical methods, e.g., the barrier function

method, solve an optimization problem by approximating the optimal solutions by a sequence of

points in ΩI . Note that such numerical methods can only find solutions in cl ΩI . If cl ΩI 6= Ω,

the optimal solution in Ω may not be in cl ΩI and such numerical methods may not be able to

find the optimal solution. This explains why similar assumptions are widely used in designing

nonlinear optimization algorithms (see, for instance, Page 264 of Zangwill (1969) and Theorem

9.4.3 of Bazaraa et al. (1993)).

To gain more insight on this type of assumptions, we consider an example. Let X = [−1, 1]×<+

and g(x) = x2 − (x+
1 )2. Then, Ω = {x : x1 ∈ [0, 1], x2 − x2

1 ≤ 0} ∪ {x : x1 ∈ [−1, 0], x2 = 0}, as

in Figure 5. However, note that ΩI = {x : x1 ∈ (0, 1], x2 − x2
1 < 0} (the shaded area in Figure 5).

Then, cl
(
ΩI

)
= {x : x1 ∈ [0, 1], x2−x2

1 ≤ 0} 6= Ω. Suppose that the optimal solution is x∗ = (−1, 0)

as in Figure 5. Then, there does not exist an sequence of points from ΩI that can approach x∗.

Therefore, any numerical methods that approximate the optimal solutions by sequences of points

in ΩI , e.g., the barrier function method, cannot find the optimal solution of this problem.

Back to our setting, we consider another example. Let X = [−2, 2],

p(x) = Pr
{
[1 + (x+)2]ξ − 1 ≤ 0

}
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Figure 5: An example where cl
(
ΩI

) 6= Ω.

and α := Pr{ξ ≤ 1}. One has that

p(x) =





Pr{ξ ≤ 1} = α if x ≤ 0,

Pr
{

ξ ≤ 1
1 + x2

}
< α if x > 0,

so that Ω = [−2, 2] and ΩI
0 = (0, 2]. Therefore cl ΩI

0 = [0, 2] 6= Ω and Assumption 5 does not hold

for this simple example. If we take x∗ = −2, we cannot find a sequence in ΩI
0 to approach it.

Our approach tries to find a sequence {xε : xε ∈ Ω(ε)}, where Ω(ε) is defined in Subsection 2.4

satisfying Ω(ε) ⊂ Ω0. It is possible that there is a sequence εi ↘ 0 such that xεi ∈ ΩI
0. We wish

to prove that any cluster of {xεi}, say x̃, is an optimal solution to Problem (P). Since x̃ ∈ cl ΩI
0,

Assumption 5 is a natural condition to assume.

C Proof of Theorem 4

Proof. As X is a compact polyhedron, it can be expressed as

X = {x ∈ <n : Ax− b ∈ <m1− × {0m2}},

where A ∈ <(m1+m2)×n, b ∈ <m1+m2 for some integers m1 ≥ 0 and m2 ≥ 0. The Lagrange functions

of Problems (P) and (Pε) are define by

L(x, λ, µ) = h(x) + λ(p(x)− α) + 〈µ,A− b〉

and

Lε(x, λ, µ) = h(x) + λ(pε(x)− α) + 〈µ,A− b〉,
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respectively, where

pε(x) =
g1(x, ε)− g2(x)

ε
.

Let Σ and Σε be the sets of all stationary points of Problems (P) and (Pε), respectively. Then,

Σ ⊂ X and Σε ⊂ X are both compact sets. For any x ∈ Σ, let Γ(x) be the set of Lagrange

multipliers of Problem (P) at x, i.e.,

Γ(x) = {(λ, µ) ∈ <1+m1
+ ×<m2 : ∇L(x, λ, µ) = 0, λ(p(x)− α) = 0, 〈µ,Ax− b〉 = 0}.

For any x ∈ Σε, let Γε(x) be the set of Lagrange multipliers of Problem (Pε) at x, i.e.,

Γε(x) = {(λ, µ) ∈ <1+m1
+ ×<m2 : ∇Lε(x, λ, µ) = 0, λ(pε(x)− α) = 0, 〈µ,Ax− b〉 = 0}.

Then, we have

Λ0 = {(x, λ) : x ∈ Σ,∃µ, (λ, µ) ∈ Γ(x)}, Λ(ε) = {(x, λ) : x ∈ Σε,∃µ, (λ, µ) ∈ Γε(x)}. (26)

For any x ∈ Σ, it follows from Exercise 6.39 and Example 6.40 of Rockafellar and Wets (1998)

that Condition (14) is Robinson constraint qualification, and it is Mangasarian-Fromovitz (MF)

constraint qualification when X is a compact polyhedron. We have from Gauvin (1977) that the

set of Lagrange multipliers of Problem (P) at x, Γ(x) is bounded. As any element (λ, µ) ∈ Γ(x) is

a solution of the following system

N(x)

[
λ

µ

]
+ q(x) = 0, λ ≥ 0, µj ≥ 0, j = 1, . . . , m1, (27)

where

N(x) =

[
∇p(x)T AT

p(x)− α (Ax− b)T

]
, q(x) =

[
∇f(x)

0

]
.

Since N(x) and q(x) are continuous in x, we have from the classical Hoffman lemma in Hoffman

(1952) that for each point x′ in an open neighborhood of x, Γ(x′), if nonempty, is bounded. It

follows from the compactness of Σ, the set
⋃

x∈Σ

Γ(x) is bounded. Therefore, it follows from (26)

that Λ0 is a compact set.

It follows from Remark 2.88 of Bonnans and Shapiro (2000) that for δ > 0 small enough, MF

constraint qualification of Problem (P) holds at every point x ∈ Ω0 + δB. Having the same reason

as the boundedness of
⋃

x∈Σ

Γ(x), we have that the set
⋃

x∈Ω0+δB

Γ(x) is bounded.

34



From Lemma 3, we have that Ω(ε) ⊂ Ω0 + δB for small ε > 0. If δ is small enough, we have

from Remark 2.88 of Bonnans and Shapiro (2000) that MF constraint qualification of Problem (Pε)

holds at every point x ∈ Ω0 + δB. Then, for any Ω0 + δB, any point (λ, µ) ∈ Γε(x) satisfies

Nε(x)

[
λ

µ

]
+ q(x) = 0, λ ≥ 0, µj ≥ 0, j = 1, . . . , m1, (28)

where

Nε(x) =

[
∇pε(x)T AT

pε(x)− α (Ax− b)T

]
.

It follows from Lemma 2 that pε(x) and ∇pε(x) are small perturbations of p(x) and ∇p(x), respec-

tively, if ε > 0 small enough. Therefore, the system (28) is a linear system in (λ, µ) perturbated

from the system (27) and we have from the classical Hoffman lemma that

Γε(x) ⊂ Γ(x) + γB,

for some γ > 0 when 0 < ε ≤ ε0, where ε0 > 0 is some positive scalar and B ⊂ <1+m1+m2 is the

unit ball. Therefore, for ε > 0 small enough,

⋃

x∈Σε

Γε(x) ⊂
⋃

x∈Ω0+δB

Γε(x) ⊂
⋃

x∈Ω0+δB

[Γ(x) + γB],

which, from (26) and the boundedness of
⋃

x∈Ω0+δB

Γ(x), implies that Λ(ε) is uniformly bounded for

ε > 0 less than a small positive number ε0. We have from Theorem 3 that lim supε↘0 Λ(ε) ⊂ Λ0,

which implies that limε↘0D(Λ(ε),Λ0) = 0 from the discussions in Example 4.13 of Rockafellar and

Wets (1998). This concludes the proof of the theorem.

D Proof of Property 3

We first prove the following two lemmas.

Lemma 5. For Problem (DCP), let {yk} ⊂ X be a sequence convergent to ȳ ∈ Ω at which Slater’s

condition holds. Then, limk→+∞Ωyk
= Ωȳ.4

4The terminologies of outer limit, inner limit and limit of a sequence of sets are given by Definition 4.1 of
Rockafellar and Wets (1998). Here lim supk→+∞ Ωyk is the outer limit of Ωyk which is defined by lim supk→+∞ Ωyk :=
{z : ∃kj → +∞, ∃zj ∈ Ωykj

such that zj → z}, lim infk→+∞ Ωyk is the inner limit of Ωyk which is defined by

lim infk→+∞ Ωyk := {z : ∃zk ∈ Ωyk for all k beyond some k̄ ∈ N, zk → z}; and if the outer limit and the inner limit
are equal, we say limk→+∞ Ωyk exists and limk→+∞ Ωyk = lim supk→+∞ Ωyk = lim infk→+∞ Ωyk .
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Proof. Note that lim infk→+∞Ωyk
⊂ lim supk→+∞Ωyk

. Then it suffices to prove that

lim sup
k→+∞

Ωyk
⊂ Ωȳ ⊂ lim inf

k→+∞
Ωyk

.

We first prove that lim supk→+∞Ωyk
⊂ Ωȳ. Let z ∈ lim supk→+∞Ωyk

, then there is a sequence

{kj} ⊂ N such that z = limj→∞ zj for some zj ∈ Ωykj
. We have zj ∈ X and g1(zj) − [g2(ykj

) +

∇g2(ykj
)T (zj−ykj

)] ≤ 0. Letting j → +∞, we have z ∈ X and g1(z)− [g2(ȳ)+∇g2(ȳ)T (z− ȳ)] ≤ 0,

which implies z ∈ Ωȳ. Therefore, lim supk→+∞Ωyk
⊂ Ωȳ.

We then prove that Ωȳ ⊂ lim infk→+∞Ωyk
. Let z ∈ Ωȳ, we only need to prove that there exists

{zj} such that zj ∈ Ωyj for j large enough and zj → z. Let l2(y, y′) = g2(y) +∇g2(y)T (y′ − y),

G(y′) =
[

y′

g1(y′)− l2(ȳ, y′)

]
, Gj(y′) =

[
y′

g1(y′)− l2(yj , y
′)

]

and

FG(y′) = G(y′)−X ×<−, FGj (y
′) = Gj(y′)−X ×<−.

We choose z ∈ Ωȳ. As ȳ ∈ Ω satisfies intΩȳ 6= ∅, we have that Robinson constraint qualification of

Ωȳ at z is satisfied, i.e.,

0 ∈ int{G(z) + JG(z)<n −X ×<−}.

It follows from Theorem 2.89 of Bonnans and Shapiro (2000) that the mapping FG is metrically

regular at (z, 0) at a rate c > 0. Let D(y′) = Gj(y′)−G(y′), namely

D(y′) =
[

0
l2(yj , y

′)− l2(ȳ, y′)

]
,

and for y′ ∈ X, y′′ ∈ X

D(y′)−D(y′′) =
[

0
(y′ − y′′)T (∇g2(yj)−∇g2(ȳ))

]
.

Therefore, we have

‖D(y′)−D(y′′)‖ = |(y′ − y′′)T (∇g2(yj)−∇g2(ȳ))| ≤ ‖∇g2(yj)−∇g2(ȳ)‖‖y′ − y′′‖.

As ∇g2(·) is continuous at ȳ, ‖∇g2(yj) − ∇g2(ȳ)‖ can be arbitrarily small as j is large enough.

Assume that j is large enough such that

κj := ‖∇g2(yj)−∇g2(ȳ)‖ ≤ 1
2c

.
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We have from Theorem 2.84 of Bonnans and Shapiro (2000) that, when j is large enough, FGj is

metrically regular at (z, Gj(z)−G(z)). Namely for (z′, η) close to (z,Gj(z)−G(z)),

dist(z′,F−1
Gj

(η)) ≤ cj dist(Gj(z′)− η, X ×<−)

for the constant cj = 2c(1− cκj)−1. As cj ∈ (0, 2c], for η = 0, when z′ is close to z,

dist(z′,Ωyj ) ≤ 2c dist(Gj(z′), X ×<−). (29)

For any y′ ∈ X, we have

∥∥Gj(y′)−G(y′)
∥∥ =

∣∣l2(yj , y
′)− l2(ȳ, y′)

∣∣

=
∣∣g2(yj) +∇g2(yj)T (y′ − yj)− [g2(ȳ) +∇g2(ȳ)T (y′ − ȳ)]

∣∣

=
∣∣(g2(yj)− g2(ȳ)) + y′T (∇g2(yj)−∇g2(ȳ))

−∇g2(yj)T (yj − ȳ)− ȳT∇g2(yj)−∇g2(ȳ))
∣∣

≤ |g2(yj)− g2(ȳ)|+
∥∥y′

∥∥ ‖∇g2(yj)−∇g2(ȳ)‖

+ ‖∇g2(yj)‖ ‖yj − ȳ‖+ ‖ȳ‖ ‖∇g2(yj)−∇g2(ȳ)‖

≤ |g2(yj)− g2(ȳ)|+ 2M0 ‖∇g2(yj)−∇g2(ȳ)‖+ M1 ‖yj − ȳ‖ , (30)

where M0 = max{‖y‖ : y ∈ X} and M1 = max{‖∇g2(y)‖ : y ∈ X}. By setting z′ = z in Equation

(29) and by Equation (30), we obtain

dist(z, Ωyj ) ≤ 2c dist(Gj(z), X ×<−)

≤ 2c ‖Gj(z)−G(z)‖

≤ 2c [|g2(yj)− g2(ȳ)|+ 2M0‖∇g2(yj)−∇g2(ȳ)‖+ M1‖yj − ȳ‖] .

Therefore, for large j, there exists zj ∈ Ωyj such that

‖zj − z‖ ≤ 2c[|g2(yj)− g2(ȳ)|+ 2M0‖∇g2(yj)−∇g2(ȳ)‖+ M1‖yj − ȳ‖],

which implies zj → z. Hence Ωȳ ⊂ lim infj→+∞Ωyj . This concludes the proof of the lemma.

Lemma 6. Let {xk} denote the sequence of solutions generated by Algorithm SCA for Problem

(DCP) starting from x0 ∈ Ω. If xk+1 = xk at which Slater’s condition holds, then xk is a KKT

point of Problem (DCP).
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Proof. As xk+1 is an optimal solution to CP(xk), we have that xk is the optimal solution of CP(xk).

Since CP(xk) is a convex optimization problem and Slater’s condition holds at xk, we obtain

0 ∈ ∇h(xk) + [∇g1(xk)−∇g2(xk)]N<−(g1(xk)− g2(xk)) + NX(xk),

which implies that xk is a KKT point of Problem (DCP).

Now we can prove Property 3.

Proof. It follows from Property 1 that {xk} ⊂ Ω, and thus {xk} has cluster points and any cluster

point x̄ ∈ Ω. Since, from Property 2, {h(xk)} is non-increasing and convergent to infk{h(xk)}, we

have that h(x̄) = infk{h(xk)}.
Now we prove that x̄ is an optimal solution of CP(x̄). Let {kj} satisfy that xkj

→ x̄. Let

h(x) = h(x) + IΩx̄(x), hkj
(x) = h(x) + IΩxkj

(x),

where

IA(x) =
{

0 if x ∈ A
+∞ if x /∈ A

.

It follows from Lemma 5 that Ωxkj
→ Ωx̄, and from Proposition 7.4(f) of Rockafellar and Wets

(1998) that IΩxkj
(·) epi-converges to IΩx̄ . Since h(·) is continuous, we have that hkj

(·) epi-converges

to h(·). It follows from Theorem 7.33 of Rockafellar and Wets (1998) that

inf
x

hkj
(x) → inf

x
h(x)

and

lim sup
j→+∞

argmin hkj
⊂ argmin h. (31)

Noting that argmin hkj
coincides with the solution set of CP(xkj

), which contains xkj+1, and

argmin h coincides with the solution set of CP(x̄), which is nonempty and compact. From Equation

(31) we have that xkj+1 has a cluster point x̃ ∈ Ω, which is a point in argmin h. Since h(x̃) ≤ h(x̄)

and h(x̄) = infk h(xk), we have that h(x̃) = h(x̄). Noting again that x̄ ∈ Ωx̄, we have that x̄ is an

optimal solution of CP(x̄). From Lemma 6, we have that x̄ is a KKT point of Problem (DCP).

If h is strictly convex over O, then argmin hkj
is the singleton {xkj+1} and argmin h is also

singleton, say {x̃}. From Equation (31) we have that xkj+1 → x̃ ∈ Ω. Since h(x̃) ≤ h(x̄) and

h(x̄) = inf
k

h(xk), we have that h(x̃) = h(x̄). Once again, noting that the solution set of CP(x̄) is

singleton, we obtain x̃ = x̄. Therefore, xkj+1 → x̄. In a similar way, we can show that xkj+2 → x̄,
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xkj+3 → x̄ · · · . Or equivalently, xkj+s → x̄ for all s ∈ N. Therefore, xk → x̄ and x̄ is the solution

of CP(x̄), and also a KKT point of Problem (DCP).
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