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5 Abstract—Feedback is a fundamental mechanism existing in the human visual system, but has not been explored deeply in designing

6 computer vision algorithms. In this paper, we claim that feedback plays a critical role in understanding convolutional neural networks

7 (CNNs), e.g., how a neuron in CNNs describes an object’s pattern, and how a collection of neurons form comprehensive perception to

8 an object. To model the feedback in CNNs, we propose a novel model named Feedback CNN and develop two new processing

9 algorithms, i.e., neural pathway pruning and pattern recovering. We mathematically prove that the proposed method can reach local

10 optimum. Note that Feedback CNN belongs to weakly supervised methods and can be trained only using category-level labels. But it

11 possesses a powerful capability to accurately localize and segment category-specific objects. We conduct extensive visualization

12 analysis, and the results reveal the close relationship between neurons and object parts in Feedback CNN. Finally, we evaluate the

13 proposed Feedback CNN over the tasks of weakly supervised object localization and segmentation, and the experimental results on

14 ImageNet and Pascal VOC show that our method remarkably outperforms the state-of-the-art ones.

15 Index Terms—feedback, convolutional neural networks (CNNs), weakly supervised, object localization, object segmentation

Ç

16 1 INTRODUCTION

17 VISUAL attention is mainly dominated by “goals” from
18 our mind in a top-down manner, especially in the case
19 of object detection. Cognitive science explains this mecha-
20 nism in the “Biased Competition Theory” [1]: human visual
21 cortex would be enhanced by top-down stimuli, and non-
22 relevant neurons will be suppressed in feedback loops
23 when searching for objects. This process actually contains
24 the selectivity of neuron activations [2], which reduces the
25 chance of recognition to be interfered by either noise or
26 distractive patterns.
27 Inspired by the above evidence, in this paper we propose
28 a novel Feedback Convolutional Neural Network (Feedback
29 CNN) architecture to imitate such selectivity. Specifically,
30 we propose to jointly reason the outputs of class nodes and
31 the activations of hidden layer neurons in the feedback

32loop. Fig. 1 illustrates the main idea of Feedback CNN. The
33proposed network does the inference for input images in a
34bottom-up manner, as in traditional Convolutional Neural
35Networks [3], [4], [5]. Then high-level semantic labels (e.g.,
36outputs of class nodes) would be produced and they are set
37as the “goals” in visual search. Finally, we select the target-
38relevant neurons by pruning the neural pathway in feed-
39back loops. To capture the object of interests, it is in the pixel
40space to reconstruct the objects by recovering all patterns
41carried by the selected target relevant neurons. In this work,
42we show that the Feedback CNN is effective for visualiza-
43tion of classification models, object localization, and seman-
44tic segmentation.
45Specifically, we propose a simple yet efficient method to
46analyze image compositions represented by Convolutional
47Neural Networks, and then assign neuron activations given
48by goals during visual search. Inspired by Deformable Part-
49Based Models (DPMs) [6] that model middle level part loca-
50tions as latent variables and search for them during object
51detection, we introduce latent gate-variables to control the
52effects of hidden neurons. Then we formulate the feedback
53computation as an optimization problem and we develop
54two new algorithms to solve it, i.e., Feedback Selective Prun-
55ing (FSP) and Feedback Recovering (FR). The two proposed
56algorithms both maximize the response of network output
57to the target high-level semantic concepts in a top-down
58manner. More specifically, FSP focuses on selecting the tar-
59get-relevant neurons in the hidden layers, and FR is able to
60restore visual pattern information in the receptive field of a
61certain neuron. By combining FSP and FR, Feedback CNN
62can effectively produce the task-specific gradient maps
63which allow us to obtain visualization maps and energy
64maps with high quality. In particular, we visualize several
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65 exemplar neurons that are selected by FSP in Fig. 1. It can be
66 seen that the selected neurons are highly relevant to the tar-
67 get object and correspond to different parts of the object. As
68 a consequence, Feedback CNN can select the target-relevant
69 neurons and suppress the irrelevant ones by the top-down
70 inference, which makes the model mainly respond to the
71 most salient regions of images that are highly related to the
72 target category.
73 Accordingly, Feedback CNN enables a CNN for object
74 classification to localize and segment the interested objects
75 in natural images, as illustrated in Fig. 2. Specifically, a
76 CNN classifier performs feedforward inference for an input
77 image as usual. The predicted category, e.g., “Train” for the
78 first image, is set as the “goal” for following feedback in
79 Fig. 2c, where only the neurons associated with “Train”
80 would be activated. As a result, in Figs. 2d and 2e, only the
81 salient regions related to “Train” are highlighted in the visu-
82 alization and energy maps. With the help of these maps, it is
83 easy to localize and segment target objects in images, as
84 shown in Figs. 2f and 2g, and the whole process only needs
85 weakly supervised class annotation for training. As sug-
86 gested by these results, the feedback networks provide impor-
87 tant flexibility to Convolutional Networks towards integrating

88object recognition, localization, and segmentation into a unified
89framework.
90A preliminary version of this work was reported in [7].
91Compared with [7], apart from more comprehensive
92description, analysis, and experiments, this paper develops
93two new algorithms and gives the mathematical proofs on
94achieving local optimum. Consequently, the methods in
95this paper present much stronger capability for task-specific
96neuron selection and object capturing. Furthermore, we can
97obtain energy maps with higher signal-to-noise ratio and
98clearer object boundaries. We believe that this work paves a
99way for weakly supervised object localization and segmen-
100tation. By contrast, the previous model in [7] suffers from
101more noise and is confined to weakly supervised object
102localization.
103The main contributions of this paper are summarized as
104follows: 1) We develop two novel algorithms (i.e., FSP and
105FR) to model the feedback mechanism in CNNs, and pro-
106vide mathematical proofs on achieving local optimum. 2)
107We demonstrate that the proposed Feedback CNN has the
108capability to select the neurons associated with goal objects
109through extensive visualization. 3) We apply Feedback
110CNN to weakly supervised object localization and segmen-
111tation, and obtain significant performance improvement
112compared with previous state-of-the-art methods.

1132 RELATED WORK

1142.1 Deep CNNs

115In recent years, it has been witnessed the great success of
116deep CNNs in various computer vision tasks [3], [4], [5], [8],
117[9]. Particularly, deep CNNs have basically achieved
118human-level performance for object recognition [3], [4], [5].
119Studies in [10], [11] show that the convolutional units in
120CNNs that are trained only for the purpose of classification
121have the potential to learn a part of semantic patterns, e.g.,
122object parts. The discriminative ability of deep CNNs can be
123further improved by some approaches, such as dropout [12],
124skip connections [5], and batch normalization [13]. More-
125over, many researchers take considerable interests in
126enhancing deep CNNs to possess greater capacity by mak-
127ing the networks deeper or wider [3], [5], [14].
128The great progresses of CNNs provide a solid foundation
129for constructing a feedback model in CNNs. By introducing
130the feedback mechanism, it is expected that object localiza-
131tion and semantic segmentation can be conducted more eas-
132ily, especially under weakly supervised conditions.

Fig. 1. Feedback CNN. Given an input image, we perform a normal feed-
forward to predict the class label and set it as the target. Then use the
pruning operation to select related neurons, and perform the recovering
operation on these selected neurons to obtain target-relevant visualiza-
tion and energy maps. Each selected neuron is highly related to object
parts, which is shown by visualizing the selected neurons respectively.

Fig. 2. A simple pipeline for object localization and segmentation via the proposed Feedback CNN model. (a)(b)(c) When given an input image, the
proposed Feedback CNN is designed to utilize both bottom-up image inputs and top-down semantic labels to infer the hidden neuron activations. (d)
(e)(f)(g) Salient areas captured in the visualization and energy maps by feedback often correspond to related target objects. And based on these
maps, objects can be easily localized and segmented from the input image. Best viewed in color.
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133 2.2 Top-Down Feedback

134 Top-down Feedback is one of the important mechanisms in
135 the human visual system that plays a critical role in many
136 visual tasks, e.g., objects localization and segmentation, fea-
137 ture grouping, perceptual filling, and tuning receptive fields
138 of neurons [15]. Before our work, some efforts have been
139 made to embed the feedback mechanism into deep neural
140 networks. The convolutional latent variable models
141 (CLVMs) in [16] take feedback by treating units as the latent
142 variables of a global energy function. [17], [18] invert the
143 learned convolutional neural networks for understanding
144 deep image representations. The DasNet [19] adds a feed-
145 back structure that can dynamically alter the sensitivities of
146 convolutional filters during classification, where the feed-
147 back mechanism is learned via reinforcement learning. [20]
148 introduces the top-down module to incorporate fine details
149 into the detection framework. Recently, [21] presents a feed-
150 back based learning model. The key idea is to make predic-
151 tions based on a notion of the thus-far outcome in an
152 iterative manner. An earlier study is presented in Deep
153 BoltzmannMachines (DBM) for feature selection [22]. Mean-
154 while, Recurrent Neural Networks (RNNs) [23] and Long
155 Short-Term Memory (LSTM) [24] are explored to capture
156 attention drifting in a dynamic environment. Deconvolu-
157 tional Neural Networks [10] attempt to formulate feedback
158 as a reconstruction problem in the training phase.
159 In this work, we propose to formulate feedback as an opti-
160 mization problem for neuron selection. Different from previ-
161 ous works, our proposed feedback is used to selectively
162 modulate the status of hidden neurons during the testing
163 phase. Thus it does not affect the training procedure of CNNs,
164 i.e., many sophisticatedmodels can be directly adopted.

165 2.3 Weakly-Supervised Object Localization and
166 Segmentation

167 In recent years, many methods have been developed for
168 weakly supervised object localization based on CNNs [25],
169 [26], [27], [28], [29], [30]. For example, [28] proposes a self-
170 teaching method for object localization. [26], [27] propose to
171 use the global average pooling and max pooling to generate
172 class-specific energy maps for localizing objects. [25] pro-
173 poses to segment objects in an image using the noisy energy
174 map generated by class-specified gradients. [29] proposes to
175 retrain the recognition model after embedding the average
176 pooling layer. [30] employs a probabilistic “winner-takes-
177 all” process, in which marginal winning probability is com-
178 puted by taking activation values and positive convolu-
179 tional weights. The energy maps generated by [29] and [30]
180 mainly highlight the most discriminative parts of objects
181 while losing fine details on object boundaries, which conse-
182 quently suffer from noise and interference.
183 Meanwhile, some other approaches are proposed for
184 weakly-supervised semantic segmentation [31], [32], [33],
185 [34], [35]. The approaches presented in [31] and [34] train
186 deep networks using multiple instance learning and adopt
187 different pooling strategies. CCNN [33] and EM-Adapt [35]
188 develop a self-training framework and enforce the consis-
189 tency between the per-image annotation and the predicted
190 segmentation masks with different constraints.
191 Different from the previous methods, the proposed Feed-
192 back CNN in this paper can simultaneously perform object

193recognition, localization, and semantic segmentation with
194the same weakly supervised settings. That is, our method
195only needs to train a classification model, and then object
196localization and semantic segmentation can be automati-
197cally performed based on the energy maps generated by the
198proposed feedback selection mechanism. Here, the bound-
199ing boxes or segmentation masks are not required at all for
200the training samples.

2013 FEEDBACK CNN

2023.1 Re-Interpreting ReLU and Max-Pooling

203The recent state-of-the-art deep CNNs consist of many
204stacked feedforward layers, including convolutional, recti-
205fied linear units (ReLU), and max-pooling layers. For each
206layer, the input x can be an image or output of the previous
207layer, which is composed of C input channels with the
208width M and height N , i.e., x 2 RM�N�C . Similarly, the out-
209put y consists of C0 output channels with the width M 0 and
210heightN 0, i.e., y 2 RM0�N 0�C0

.
211Convolutional Layer. The convolution layer is used to
212extract different features of the input, which is commonly
213parameterized by C0 filters with the kernel k 2 RK�K�C .

yc0 ¼
XC

c¼1

kc0c � xc; 8c0; (1)

215215

216where kc0c represents the convolutional kernel of the c
0th fil-

217ter over the cth input channel.
218ReLU Layer. The ReLU layer is used to increase the non-
219linear properties of the decision functions without affecting
220the receptive fields of convoluional layers. Formally, it is
221defined as

y ¼ maxð0; xÞ: (2) 223223

224

225Max-Pooling Layer. Themax-pooling layer is used to reduce
226the dimensionality of the output, and the feature variance of
227deformable objects for producing the similar image represen-
228tations. The max-pooling operation is applied to each pixel
229ði; jÞ by taking its small neighborhoodN , namely,

yijc ¼ max
u;v2N

xiþu;jþv;c; 8i; j; c: (3)

231231

232Here yijc represents the pixel value of ði; jÞ over the cth out-
233put channel.
234Selectivity in Feedforward Network. To understand the
235selectivity mechanism in neural networks and formulate the
236feedback, we re-interpret the behaviors of ReLU and max-
237pooling layers by introducing a set of binary activation
238variables z 2 f0; 1g instead of the maxðÞ operations in
239Equations (2) and (3). In particular, we formulate the behav-
240iors of ReLU and max-pooling as y ¼ z � x, where � denotes
241the element-wise product (Hadamard product); and
242y ¼ z � x, where � denotes the convolution operator and z is
243a set of convolutional filters except that they are location
244variant.
245By interpreting the ReLU and max-pooling layers as
246“gates” controlled by input x, the network selects the impor-
247tant information in a bottom-up manner during the feedfor-
248ward phase, and then eliminates the signals with minor
249contributions to predictions. However, for a pre-trained
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251 harmful to image classification since they may involve irrel-
252 evant noise, e.g., cluttered backgrounds in complex scenes.
253 This could be one of the reasons that most of CNN classi-
254 fiers on ImageNet have relatively low top-1 accuracies.

255 3.2 Introducing Feedback Layer

256 For a given neural network model, most of the gates acqui-
257 esce to be opened so that maximum amount of information
258 can pass through the network for generalization. When tar-
259 geting at a particular semantic label, however, we can
260 increase the discriminativeness of features by turning off
261 the gates that provide irrelevant information. Such a strat-
262 egy is explained as the neuron selectivity in the Biased
263 Competition Theory [1], and is critical to implement the
264 top-down attention. Moreover, the evidences from [36]
265 show that the performance of both human recognition and
266 detection can be increased significantly by the goal-directed
267 selectivity after a first time glimpse. A method called ”look
268 and think twice” in [7] mimics this process and conse-
269 quently the CNN prediction accuracy is effectively boosted.
270 Technically, to increase the flexibility of models to images
271 and prior knowledge, we introduce an extra layer called feed-
272 back layer to the existing convolutional neural networks. The
273 feedback layer contains a set of binary variables Z 2 f0; 1g to
274 represent activation status of neurons. In practice, these
275 binary variables are determined by top-down messages
276 from outputs rather than inputs. The feedback layer is
277 stacked upon each ReLU layer. Then the feedback and ReLU
278 layers form a hybrid control unit to neuron response, which
279 indeed combines the bottom-up and top-downmessages:

280 Bottom-Up Inherent selectivity from ReLU layers, and the
dominant features would be passed to the
upper layers;

281 Top-Down Controlled by Feedback Layers, which propa-
gate the high-level semantic information back
to image representations. Only the gates asso-
ciated with the target neurons would be acti-
vated.

282 Fig. 3 illustrates a simple architecture of our feedback
283 model with only one ReLU layer and one feedback layer.

284 3.3 Problem Formulation

285 In this paper, we formulate the feedback mechanism as an
286 optimization problem by introducing additional control

287gate-variables Z. Given an image I and a neural network
288with learned parameters w, we optimize the output of the
289target neuron by jointly inferring the binary neuron activa-
290tion Z over all the hidden feedback layers. In particular, if
291the target neuron is a tth class node in the top layer, we
292maximize the class score StðIÞ by re-adjusting the activation
293of each neuron, namely,

max
Z

StðI; ZÞ

s:t: z
ðlÞ
ijc 2 f0; 1g; 8 l; i; j; c;

(4)

295295

296where z
ðlÞ
ijc denotes the gate-variable for the neuron ði; jÞ of

297the channel c in the feedback layer l.
298The formulation in (4) leads to an integer programming
299problem, which is NP-hard for the current non-linear deep
300network architecture. Here we derive locally optimal
301approximate solutions since St is linearly approximated for
302our considered cases.
303Linear Approximation. It is well known that a CNNpresents
304a nonlinear mapping function owing to the nonlinear layers
305such as ReLU and max-pooling. Thus StðIÞ is a highly non-
306linear function about the input image I. However, given an
307input image I0, we can approximate StðIÞ using a linear func-
308tion in the neighborhood of I0 [25], [37], [38], [39], e.g., com-
309puting the first-order Taylor Expansion as follows:

StðIÞ � StðI0Þ þ S0
tðI0ÞðI � I0Þ: (5) 311311

312

313In this work, we implement such approximations through
314two layer-wise operations after the neural network finishes
315the regular feedforward: 1) fixing the “gate” status of the
316ReLU and max-pooling layers, and 2) approximating other
317nonlinear layers with the first order Taylor Expansion. In this
318case, the class scoreStðIÞ turns to be the output of a linear neu-
319ral network. After stacking the feedback layer upon each
320ReLU layer, the objective function in (4) is updated to a line-
321arly nested function S�

t ðI;ZÞ. It can be expanded linearly from
322any feedback layer l as

S�
t ðI;ZÞ ¼

X

ijc

a
ðlÞ
ijcz

ðlÞ
ijcx

ðlÞ
ijc; (6)

324324

325where x
ðlÞ
ijc is the input of the neuron ði; jÞ of the channel c in

326the feedback layer l, z
ðlÞ
ijc is the latent gate-variable, and a

ðlÞ
ijc

327is the Contribution Weight (CW) that is determined by the

328neuron pathways from z
ðlÞ
ijc to the target neuron St.

Fig. 3. Illustration of our feedback model and its inference process. At the first iteration, the model performs as a feedforward neural network. Then,
the neurons in the feedback hidden layers update their activation status to maximize the confidence output of the target top neuron. This process
continues until convergence. Note that the black nodes represent neurons that are not activated or turned off in the feedback loop. (We show only
one layer here, but feedback layers can be tacked in the deep CNNs.)
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329 From Equation (6), the feedback optimization problem is
330 transformed as

max
Z

S�
t ðI; ZÞ

s:t: z
ðlÞ
ijc 2 f0; 1g; 8 l; i; j; c:

(7)
332332

333

334 Note that x
ðlÞ
ijc is the output of a ReLU neuron, namely, the

335 constant values produced by approximating the non-linear
336 layers before the current ReLU layer have been calculated
337 in x

ðlÞ
ijc. Thus Equation (6) does not contain a constant term.

338 3.4 Solutions

339 The objective function of the feedback optimization problem
340 in (7) is a linearly nested function. So we can expand the
341 objective function and use a greedy strategy to update the
342 hidden gate-variables. Next, according to the optimization
343 strategies, we propose two different greedy algorithms, i.e.,
344 Feedback Recovering and Feedback Selective Pruning. For con-
345 venience, we simplify the target S�

t ðI; ZÞ as S in the follow-
346 ing descriptions.

347 3.4.1 Feedback Recovering (FR)

348 In order to maximize S, we propose to optimize the latent
349 gate-variables Z layer-by-layer in a top-down order. For a
350 specific feedback layer l, the input x

ðlÞ
ijc represents a particular

351 pattern, and the Contribution Weight a
ðlÞ
ijc tells us how this

352 input pattern contributes to the target neuron S, as demon-
353 strated in Equation (6). Intuitively, we can reserve the x

ðlÞ
ijc’s

354 with positive CWs and remove the ones with negative CWs
355 to maximize S, which can be implemented by updating the
356 latent gate-variable z

ðlÞ
ijc according to the sign of a

ðlÞ
ijc. And

357 then we expand the remaining x
ðlÞ
ijc to the next feedback layer

358 l� 1. This strategy is applied on each feedback layer in a top-
359 down order.We summarize the above processes as Feedback
360 Recovering in Algorithm 1. Note that here we denote the tar-
361 get S after updating the feedback layer l as Sl, and use the
362 subscript k to replace i; j; c for simplicity. A sign function
363 dðxÞ is employed with dðxÞ ¼ 1 for x > 0 and otherwise
364 dðxÞ ¼ 0. A mathematical proof of FR is provided in the

365appendix, which can be found on the Computer SocietyDigi-
366tal Library at http://doi.ieeecomputersociety.org/10.1109/
367TPAMI.2018.2843329.

368Algorithm 1. Feedback Recovering (FR)

369INPUT : image I0, target neuron with score function S
370DO :
371Initialize all Z with 1
372for iteration ¼ 1 to max iteration do
373Feedforward
374if iteration ¼¼ 1 then
375Do Linear approximation operations
376end if
377for l ¼ N to 1 do
378if l ¼ N then

379a
ðNÞ
k ¼ @S

@x
ðNÞ
k

380z
ðNÞ
k ¼ dðaðNÞ

k Þ
381update a

0ðNÞ
k ¼ z

ðNÞ
k � aðNÞ

k

382update S ! SN ¼ P
k a

0ðNÞ
k x

ðNÞ
k

383else
384Fix z

ðNÞ
k ; z

ðN�1Þ
k ; . . . ; z

ðlþ1Þ
k

385Slþ1 ¼
P

k a
0ðlþ1Þ
k x

ðlþ1Þ
k

386a
ðlÞ
k ¼ @Slþ1

@x
ðlÞ
k

387z
ðlÞ
k ¼ dðaðlÞ

k Þ
388update a

0ðlÞ
k ¼ z

ðlÞ
k � aðlÞ

k

389update Slþ1 ! Sl ¼
P

k a
0ðlÞ
k x

ðlÞ
k

390end if
391l��
392end for
393end for

394In order to qualitatively analyze the effect of FR, we con-
395duct the proposed FR algorithm over the VggNet [4] that is
396pre-trained on the ImageNet 2012 dataset. As shown in Fig. 4,
397given an input image in the first column which contains an
398elephant and a zebra,we run FR for these two categories sepa-
399rately, and then the concerned objects can be highlighted.
400Visualization and Energy Map. After FR achieves conver-
401gence, the back-propagation from the target neuron to the
402image space is performed and a gradient map can be
403obtained. This gradient map is a three-channel matrix. To
404visualize it in the RGB space, we normalize it as the visuali-
405zation map by Min-Max normalization with a scale factor:
406255* x�min

max�min. To describe the importance of each pixel to the
407target category, the energy map is constructed by calculat-
408ing the summation of absolute gradient values of the three
409channels for each pixel and normalizing the produced one-
410channel map by ‘2 normalization.
411For the input image in Fig .4a, the visualization maps for
412the elephant and zebra are depicted in Figs. 4b and 4c. It
413can be observed that the FR fails to distinguish particular
414patterns for different target objects, but can roughly restore
415visual information in the receptive field of a target neuron.
416That is the main reason why we name Algorithm 1 as Feed-
417back Recovering. The major cause for these results is that
418we sequentially update the CWs of hidden neurons in a
419top-down manner. A more detailed analysis will be pro-
420vided in the discussion section.

Fig. 4. Visualizations by running the FR and FSP. (a)(d) The same input
image for FR and FSP. (b)(c) Visualization of gradient maps via running
FR for elephant and zebra respectively. (e)(f) Visualization of gradient
maps via running FSP for elephant and zebra respectively. Best viewed
in color.
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421 3.4.2 Feedback Selective Pruning (FSP)

422 FR modulates CWs during the optimization processes,
423 which causes it to lose the discriminativeness of resulting
424 maps. In this section, we propose to update all the gate-vari-
425 ables Z with CWs unchanged. To this end, we compute the
426 latent gate-variable Z in a bottom-up order. Specifically, we
427 modulate the input x

ðlÞ
ijc to maximize the target score S. We

428 summarize all the operations as Feedback Selective Pruning
429 in Algorithm 2. Note that w

ðl�1Þ
k0 denotes the weight between

430 x
ðl�1Þ
k0 and x

ðlÞ
k when the convolutional operation is per-

431 formed from the layer l� 1 to layer l. Similarly, the mathe-
432 matical proof of FSP is provided in the appendix, available
433 in the online supplemental material.

434 Algorithm 2. Feedback Selective Pruning (FSP)

435 INPUT : image I0, target neuron with score function S
436 DO :
437 Initialize all Z with 1
438 for iteration ¼ 1 to max iteration do
439 Feedforward
440 if iteration ¼¼ 1 then
441 Do Linear approximation operations
442 end if
443 for l ¼ 1 to N do
444 if l ¼ 1 then

445 a
ð1Þ
k ¼ @S

@x
ð1Þ
k

446 z
ð1Þ
k ¼ dðað1Þ

k Þ
447 update x

0ð1Þ
k ¼ z

ð1Þ
k � xð1Þ

k

448 update S ! S1 ¼
P

k a
ð1Þ
k x

0ð1Þ
k

449 else
450 fix z

ðlÞ
k ; z

ð2Þ
k ; . . . ; z

ðl�1Þ
k

451 Sl�1 ¼
P

k0 a
ðl�1Þ
k0 x

0ðl�1Þ
k0

452 and also,

453 Sl�1 ¼
P

k a
ðlÞ
k x

ðlÞ
k

454 x
ðlÞ
k ¼ reluðPk0 w

ðl�1Þ
k0 z

ðl�1Þ
k0 x

0ðl�1Þ
k0 Þ

455 a
ðlÞ
k ¼ @Sl�1

@x
ðlÞ
k

456 z
ðlÞ
k ¼ dðaðlÞ

k Þ
457 update x

0ðlÞ
k ¼ z

ðlÞ
k � xðlÞ

k

458 update Sl�1 ! Sl ¼
P

k a
ðlÞ
k x

0ðlÞ
k

459 end if
460 lþþ
461 end for
462 end for

463 We run the FSP under the same experimental settings as
464 for the FR, and the results are shown in Figs. 4e and 4f.
465 From the results, the salient regions in Figs. 4e and 4f focus
466 on different target objects. That is, the FSP algorithm is able
467 to select target-relevant neurons in deep CNN. This is the
468 reason why we name it as Feedback Selective Pruning.
469 Compared with FR, therefore, FSP possesses more powerful
470 ability to distinguish different target objects. For such ability
471 of FSP, it is mainly because the status of gate-variables is
472 determined by the CWs of hidden neurons and the inputs
473 are modulated instead of the CWs during the optimization.
474 We will provide more discussion in the next section.

4753.5 Discussion

476To maximize the target score S, the FR algorithm updates
477CWs layer-by-layer from top to bottom. During optimiza-

478tion, the gate-variable z
ðlÞ
ijc for x

ðlÞ
ijc is determined by the modi-

479fied a
0ðlÞ
ijc instead of original a

ðlÞ
ijc. As a consequence, it would

480destroy the ability of the target neuron to judge whether a
481pattern is beneficial to the semantic information it repre-
482sents. But the FR algorithm presents a good method to visu-
483alize the content in the receptive field of a neuron.
484In contrast, the FSP algorithm updates the activations of
485hidden neurons to maximize the target score S from bottom
486to top. For a particular neuron, its value x

ðlÞ
ijc may be changed

487because of the updating of x
ðl�1Þ
ijc . However, the CW, i.e., a

ðlÞ
ijc

488for x
ðlÞ
ijc will not be changed in a single iteration, since the sta-

489tus of neurons in the ReLU and max-pooling layers have
490been fixed after the first feedforward and the network is
491optimized in a bottom-up order. Due to adopting different
492computational strategies, FSP and FR result in different z

ðlÞ
ijc.

493From another point of view, S can be expanded from
494each feedback layer. Suppose that we have N feedback
495layers in total, and we do expand S for N times at all the
496feedback layers. Then S can be reformulated as

S ¼ 1

N

XN

l¼1

X

ijc

a
ðlÞ
ijcz

ðlÞ
ijcx

ðlÞ
ijc: (8)

498498

499If each x
ðlÞ
ijc; 8 c; l 2 1; 2; . . . ; N represents a particular pat-

500tern, then S is a linear combination of all those patterns
501from Equation (8). All the patterns with the negative CW
502will be removed by FSP. This will change the values of the
503reserved x

ðlÞ
ijc,s, but not change the relationship between the

504reserved patterns and the target neuron. Actually, the FSP
505offers a natural way to seek the patterns closely related to a
506particular object.
507Indeed, neither FR nor FSP provides a global optimum
508solution, and thus it is difficult to produce perfect visualiza-
509tion and energy maps only using one of them. In this paper,
510we propose Feedback CNN to combine the advantages of
511FR and FSP, and consequently impressive results can be
512produced.
513For both FR and FSP, the target neuron S is not limited to
514be a class node in the top layer. According to the optimiza-
515tion process, the target neuron S can be any hidden neuron
516in the neural network. In our proposed Feedback CNN, the
517FSP algorithm is used to select target-relevant neurons in
518every layer for a particular class node, and the FR algorithm
519is employed to reconstruct the target object by restoring the
520visual pattern information carried by the selected neurons.
521More specifically, the target object would be roughly recon-
522structed by: (1) running FR over the selected neurons in one
523of the middle layers simultaneously, and (2) performing a
524back-propagation from the target neurons (via setting the
525gradients as 1) to the image space.
526Fig. 5 presents some examples to intuitively show the
527results generated by the proposed Feedback CNN. Specifi-
528cally, Figs. 5b and 5c give the results of FR on the selected
529neurons separately, where the energy and the visualization
530maps are merged via the average operation. Figs. 5d and 5e
531give the results of FR on the selected neurons simulta-
532neously, which is much more efficient in practice. It can be
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533 seen that the target objects can be effectively captured by
534 Feedback CNN even for the images containing cluttered
535 background. Thus the neurons associated with the target
536 objects can be selected while the irrelevant ones can be
537 turned off. Note that this kind of selectivity occurs in each
538 hidden layer. In particular, for a deep CNN, we determine
539 the status of gate-variables according to the mean value of
540 all CWs in a layer, which would be more robust to noisy
541 patterns.

542 4 EXPERIMENTAL RESULTS

543 In this section, we conduct extensive experiments to verify
544 the effectiveness of Feedback CNN. The iteration process of
545 FSP is analyzed in Section 4.1 and the effectiveness of neu-
546 ron selection is studied in Section 4.2. We evaluate the dis-
547 criminative ability of FSP in Section 4.3. Besides, we
548 conduct quantitative experiments of weakly supervised
549 object localization in Section 4.4 and weakly supervised
550 semantic segmentation in Section 4.5. It should be noted
551 that since the FR algorithm is like a kind of image recon-
552 struction, we evaluate FR together with FSP in Sections 4.4
553 and 4.5.

554 4.1 Analysis on Iteration Process of FSP

555 In order to verify our theoretical analysis described in Sec-
556 tion 3 that the score of the target neuron would keep
557 increasing until convergence when running the FSP algo-
558 rithm, we specially visualize the iterative process of the FSP
559 algorithm here. For the experimental purpose, the VggNet
560 (16 layers) [4], which is pre-trained with ImageNet 2012
561 training set, is fine-tuned on the Pascal VOC2012 data set.
562 First, as shown in Figs. 6a, 6b and 6c, given the input
563 image, the FSP algorithm is applied respectively on two
564 neurons which represent the categories of “dog” and “cat”

565in the last fully connected layer named as “fc8” in the
566VggNet. The scores of all the 20 neurons in “fc8”, corre-
567sponding to the 20 classes of Pascal VOC2012, are recorded
568during the iteration procedure. The iteration process for cat-
569egory “cat” is plotted with the red curve, “dog” with the
570green curve, and other 18 classes with the blue curves. As
571can be seen, all the iterative procedures converge after about
5725 iterations. And the scores of the target neuron keep
573increasing until convergence, while the scores of other clas-
574ses are suppressed even if the corresponding objects are
575presented in the image. Similar results are derived from the
576image which contains a bus and several cars, as shown in
577Figs. 6d, 6e and 6f. These results prove that FSP will con-
578verge to a local optimum efficiently and increase the score
579of the target neuron effectively. In addition, it should be
580noted that there are several small cars in the top left and
581right corners in Fig. 6d. When feedback is applied with
582respect to category “car”, the scores of the target neuron
583keep increasing while the scores for “bus” decrease heavily
584though there is a big bus in the center of the image, as dem-
585onstrated in Fig. 6f. The reason is that neurons carrying use-
586ful information for particular targets can be selected
587effectively while irrelevant neurons will be turned off in the
588feedback loops.
589Furthermore, we apply FSP on the ImageNet 2012 classi-
590fication validation set which contains 50,000 images. The
591ground-truth label of each image is set as the target for the
592feedback model, and the scores of 5 iterations for all images
593are recorded. Then we calculate their mean and standard
594deviation of each iteration, and plot them in Fig. 7. We find
595that the FSP algorithm is also effective even for a very large
596image data set.

5974.2 Effectiveness of Neuron Selection

598In this section, we evaluate the effectiveness of neuron selec-
599tion of FSP. Given an image with multiple class objects, e.g,
600images in Fig. 8, we run the FSP algorithm with the same
601VggNet in Section 4.1 for different targets, and take a mid-
602dle layer named as “conv5_2” for explanation. This layer
603has 512 filter kernels, indicating that it may express 512

Fig. 5. Results generated by combining both FR and FSP. (a) Input
images. (b)(c) Merged energy maps and visualization maps by running
FR separately on neurons selected by FSP. (d)(e) Energy and visualiza-
tion maps by running FR simultaneously on neurons selected by FSP.
Best viewed in color.

Fig. 6. The iteration curves of FSP for different objects. (a)(d) Input
images. (b)(c) The iteration curves for dog and cat respectively. (e)(f)
The iteration curves for bus and car respectively.
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604 patterns related to different classes. In Fig. 8, the first input
605 image contains 2 people, a bicycle and a car, and the FSP
606 algorithm is run for the three classes. After convergence, for
607 each target, we can select the top 5 channels by ranking the
608 512 feature maps according to their maximum scores. Fur-
609 ther, we select the 5 neurons that have the maximum activa-
610 tion scores in each of the top 5 channels. As illustrated in
611 Fig. 8, the FR algorithm is run to visualize these 5 neurons,
612 and it turns out that they represent the most discriminative
613 parts of the corresponding objects. The similar results
614 appear in another image with some people and bottles.
615 To be more convincing, we evaluate these selected top 5
616 filters on the whole Pascal VOC2012 segmentation valida-
617 tion set which contains 1,449 images. We calculate the maxi-
618 mum and mean responses of the selected top 5 filters
619 related to each of the 20 categories by using the images of
620 each category. Since many images have multiple class
621 labels, the calculation process using some of these images
622 will be slightly adjusted. Suppose that we have correctly
623 selected 5 filters for category A and a given input image is
624 labeled as category A and B. Then the responses of these 5
625 filters will be mainly caused by the objects from category A,
626 thus it is not reasonable to put these responses to category
627 B.To avoid this mutual influence, we ignore these images
628 when evaluating the performance on category B.

629In Fig. 9, the maximum and mean responses are pre-
630sented in the first and second rows respectively. We take
631the category “person” as an example for detailed analy-
632sis. FSP is run for the category “person” on the person-
633bicycle-car image until convergence, and top 5 filters are
634acquired. All images that are labeled as “person” are fed
635to the original CNN model. The responses are drawn
636with the magenta lines. Then, images of other 19 classes
637which do not contain any “person” are fed to the same
638CNN to get the corresponding responses. Specially, the
639responses for the category “bicycle” and “car” which
640appear in the image are plotted with the red and cyan
641lines respectively, and the rest 17 classes are plotted
642with blue lines. In Fig. 9b, the fact that the magenta lines
643is higher than other lines indicates that the correspond-
644ing filters are highly related to its target category, which
645means that the FSP algorithm has effectively selected the
646meaningful filters. The results are similar for another
647image, as shown in Fig. 9e. We find that this kind of
648neuron selection happens in all hidden layers. The FSP
649algorithm has the ability to correctly select the corre-
650sponding neurons (filters) to preset targets, as well as
651suppress irrelevant neurons at the same time.

Fig. 7. The mean iteration curve of 50000 images from the ImageNet
2012 classification validation set.

Fig. 9. Filter selection. The FSP algorithm is run for different objects in the input images (a) and (e). After FSP achieves convergence, we select top 5
channels (corresponding to 5 filters) for each target object according to the maximum scores of 512 channels in the “conv5_2” layer. We calculate the
maximum and mean responses of these 5 filters to the images of 20 different classes from the Pascal VOC2012 segmentation validation set. The first
row reports the maximum scores and the second row reports the mean scores. The filters selected by FSP well respond to the corresponding class
images. For example, the selected filters for “person” have much higher responses to the images from the category “person”. Best viewed in color.

Fig. 8. Visualization of 5 neurons that have the maximum scores in each
of the top 5 channels selected by the FSP algorithm. Best viewed in
color.
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652 4.3 Analysis on the Discriminative Ability of FSP

653 To evaluate this discriminative ability of FSP, we conduct
654 several experiments on the Pascal VOC2012 classification
655 validation set. The same VggNet in Section 4.1 is employed,
656 and Feedback CNN is utilized to generate category-specific
657 energy maps.
658 As a result, Fig. 10 depicts several examples. The energy
659 maps generated by Feedback CNN are highly relevant to
660 the target objects in the input images, as shown in Figs. 10b,
661 10f, 10j and 10n. For convenience, these energy maps are
662 named as FSP-FR energy maps.
663 Summation Energy Map. Due to the selection ability of the
664 FSP algorithm, most of the neurons preserved in all hidden
665 layers are highly relevant to the same semantic class. Mean-
666 while, a whole object can be divided into several parts and be
667 expressed in several different hidden layers. Thus, it is rea-
668 sonable to combine all the selected neurons to generate a new
669 energy map. We achieve this simply by the summation
670 operation. After applying the FSP algorithm, we resize the
671 gradients of feature maps in all ReLU layers behind convolu-
672 tional layers with the same size of the input image, and calcu-
673 late the summation of all the resized gradient maps along the
674 channel direction. The summation map is normalized by ‘2
675 normalization, named as Summation Energy Map. Note that
676 the energy value of each pixel indicates how important this
677 pixel is to the target category and the total energy of a Summa-
678 tion Energy Map is 1. Figs. 10c, 10g, 10k and 10o illustrate
679 some results. As can be seen, the Summation Energy Maps
680 have better distributions over target objects.
681 The Summation Energy Map integrates information of
682 the selected neurons in all hidden layers. So it is more con-
683 vincing that we evaluate the discriminative ability of FSP
684 using Summation Energy Maps instead of FSP-FR energy
685 maps. We calculate the Summation Energy Maps for each
686 image of the Pascal VOC2012 segmentation validation set.
687 As the data set provides ground-truth masks for all objects
688 of each category, we calculate the sum of energy that falls
689 into the target object regions in each image. We call this
690 value as the coverage rate. The mean coverage rate is com-
691 puted for each class on all validation images and drawn in

692Fig. 11 with the blue curve. Specially, since the deconvolu-
693tional operation in back-propagation causes dilation of the
694objects in the energy maps, we further report the results of
695dilating the ground truth masks by 5 pixels and 10 pixels in
696Fig. 11, with green and red curves respectively. As a con-
697trast, the mean coverage rate of energy maps based on the
698original gradients of the input image is reported too. As can
699be seen, all coverage rates of Summation Energy Maps (left)
700are much higher. That is, the Summation Energy Maps gen-
701erated by FSP effectively highlight the expected objects and
702almost focus on the target areas.
703To provide a more convincing evaluation of the discrimi-
704native ability of Summation Energy Map, we also calculate
705the coverage rate only for images with multi-class labels in
706PASCAL VOC2012 segmentation validation set. The corre-
707sponding results are shown in Fig. 12, demonstrating the
708effectiveness of FSP. All these results indicate that the FSP
709algorithm has a strong discriminative ability. Object-related
710neurons can be correctly selected and class-specific energy
711maps can also be effectively produced, which well paves
712the road for weakly supervised object localization and
713weakly-supervised semantic segmentation.

7144.4 Weakly-Supervised Object Localization

7154.4.1 The ImageNet 2012 Localization Task

716In this section, we evaluate the object localization power of
717Feedback CNN on the ImageNet 2012 localization task. The

Fig. 10. Visualization and energy maps. (a)(e)(i)(m) Input images. (b)(f)(j)(n) FSP-FR energy maps. (c)(g)(k)(o) Summation Energy Maps. (d)(h)(l)(p)
Visualization maps. Note that (i-p) demonstrate some results when input images contain multi-class objects. Best viewed in color.

Fig. 11. Coverage rates of Summation Energy Map over all 20 classes
images of Pascal VOC2012. (left) Coverage rates of Summation Energy
Maps. (right) Coverage rates of the energy maps generated by original
gradients. Best viewed in color.
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719 objects in an image. The top 5 localization evaluation met-
720 ric [25] is employed, in which a correct prediction is counted
721 when one of the top 5 guesses meets the requirement that
722 both object category prediction and its associated bounding
723 box are correct. To generate the top 5 category predictions,
724 the VggNet is trained on the ImageNet 2012 classification
725 training set. For weakly supervised localization, several
726 steps are performed to get a bounding box. We summarize
727 the experimental procedure in Procedure 1.

728 Procedure 1.Weakly Supervised Object Localization

729 1: Given a test image and a predicted label;
730 2: Run FSP according to the predicted label and obtain Sum-
731 mation Energy Map;
732 3: Get a bounding box which preserves 99 percent energy of
733 the Summation Energy Map. Crop the box region from the
734 original image as new input;
735 4: Apply FSP again on the new input image;
736 5: Set one of the middle-level layers (e.g., “conv5_2”) as the
737 target layer for FR;
738 6: Set the preserved neurons in “conv5_2” as the target, and
739 run FR on those neurons simultaneously to get a new
740 energy map;
741 7: Get a bounding box which preserves 99 percent energy of
742 the new energy map.

743 In particular, as described in Procedure 1, objects are
744 localized in two stages because of the varied scale of objects.
745 We first localize the objects roughly in Steps 1–4. Then the
746 precise localization is obtained in Steps 5–9 by combining
747 FSP and FR. Note that, in Procedure 1, we intuitively select
748 the “conv5_2” layer since the neurons in this layer represent
749 large-size patterns which are beneficial for reconstructing
750 target objects. And to preserve as much energy as possible
751 but avoid meaningless solutions (e.g., a box with the same
752 size of the input image), we intuitively set the rate of the
753 preserved energy as 99 percent. Better performance could
754 be produced when carefully select those hyper-parameters.
755 We compare the localization performance of Feedback
756 CNN on the ILSVRC2012 validation set (50,000 images)
757 with several state-of-the-art methods in Table 1. Compared
758 with the VGGnet-GAP [29], our method wins 5.01 percent
759 in terms of the accuracy of weakly supervised object locali-
760 zation. To avoid the influence of different classification per-
761 formance of the compared models, we employ different
762 image cropping strategies, such as no cropping, 5 cropping,
763 and dense cropping [4], to produce different classification

764accuracies and we compare the localization accuracy when
765classification error rates are close. It is important to note
766that, the classification accuracies of the compared methods
767are all produced by using 5 cropping operation. As illus-
768trated in Table 1, When our classification accuracy is 3.48
769percent (without cropping operation) and 0.75 percent
770(with 5 cropping operations) lower than the compared
771approach VGGnet-GAP [29], we still achieve 2.32 and 3.42
772percent higher localization accuracy, respectively. More-
773over, when given ground truth labels, 36.50 percent error
774rate is obtained, which is an accuracy of 2.2 percent higher
775than the recent best-performing approach MWP [30] under
776the same experimental set-up.
777Due to the powerful selection ability of FSP and the bet-
778ter object boundaries in energy maps, the proposed Feed-
779back CNN outperforms the state-of-the-art approaches. The
780energy maps generated by our Feedback CNN are more
781precise and contain more complete objects. Accordingly, the
782bounding boxes are more close to the ground truth bound-
783ing boxes. Fig. 13 displays some examples.

7844.4.2 Object Localization on Pascal VOC

785We now turn to a different evaluation setting. We follow the
786evaluation protocol of weakly supervised object localization
787in [27], [30], [40]. Experiments are conducted on the test set
788of Pascal VOC2007 with 4,952 images and Pascal VOC2012
789classification validation set with 5,823 images. Here, we
790compare Feedback CNN with the following methods: Exci-
791tation Backprop (EB) [30]; Exemplar-Driven(ED) [40]; Deep
792inside CNN (DICNN) [25]; Deconvolutional neural net-
793works (Deconv) [10], and Weakly-supervised learning CNN
794(WeakSup) [27].
795For Feedback CNN, the Summation Energy Maps are
796used as localization score maps. We extract the maximum

Fig. 12. Coverage rates of Summation Energy Map of multi-class images
of Pascal VOC2012. (left) Coverage rates of Summation Energy Maps.
(right) Coverage rates of the energy maps generated by original gra-
dients. Best viewed in color.

TABLE 1
Localization Results on ILSVRC2012

methods
classification
top 5 error

localization
top 5 error

deepinside [25] - 44.6
VGGnet-GAP [29] 12.2 45.14
Backprop-on-VGGnet [29] 11.4 51.46
GoogLeNet-GAP [29] 13.2 43.00
GoogLeNet [29] 11.3 49.34
Feedback CNN-no crop 15.68 42.82
Feedback CNN-5 crop 12.95 41.72
Feedback CNN-dense crop 9.22 40.32
MWP [30] with GT 38.70
Feedback CNN with GT 36.50

Fig. 13. Examples of weakly supervised object localization of our
approach. The predicted bounding boxes are plotted in red color.
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797 point on a Summation Energy Map as a location prediction.
798 A hit is counted if the maximum point falls into the ground
799 truth bounding box of the target category, otherwise a miss
800 is counted. Unlike [27], which sets a 18-pixel tolerance to
801 the predicted location, we restrict the correct predicted loca-
802 tion to be within the ground truth bounding box for a more
803 accurate evaluation. The localization accuracy is measured
804 by Acc ¼ Hits

HitsþMisses for each category. The mean accuracy
805 across all categories is reported. Table 2 presents the experi-
806 mental results.
807 Note that we use the ground truth category labels as tar-
808 gets for Feedback CNN on Pascal VOC2007 for fair compar-
809 ing with DICNN [25] and EB [30], and use the predicted
810 ones on Pascal VOC2012 for fair comparing with ED [40]
811 and WeakSup [27]. The results demonstrate that Feedback
812 CNN significantly outperforms the compared methods with
813 a large performance gap.
814 A visual comparison between Deconv [10], WeakSup [27],
815 EB [30] and Feedback CNN is shown on the left side of
816 Fig. 14. All the three input images contain a motorbike, and
817 we present the localization maps for the motorbike class
818 produced by the above four methods. More examples are
819 presented on the right side of Fig. 14, in which all the input
820 images contain objects from two categories of PASCAL
821 VOC. As can be seen, our Feedback CNN generates more
822 accurate localization maps with less noise. Both the qualita-
823 tive and quantitative experiments support that Feedback
824 CNN performs very well for the weakly-supervised object
825 localization.

826 4.5 Weakly-Supervised Semantic Segmentation

827 In this section, we focus on the weakly-supervised semantic
828 segmentation task with experimental analysis on the Pascal
829 VOC2012 semantic segmentation challenge. We employ the
830 standard Pascal VOC2012 segmentation metric: mean inter-
831 section-over-union (mIoU). Note that we only make use of
832 class-level labels to fine-tune VggNet for classification on
833 the Pascal VOC2012 segmentation training set, and evaluate
834 our method on the Pascal VOC2012 semantic segmentation
835 validation set (containing 1,449 images). In the training
836 phase, the input images are randomly cropped, mirrored,
837 scaled and rotated to obtain a better model. As for the
838 multi-label classification task, the loss function we adopt is
839 the sigmoid cross entropy instead of soft-max. To segment
840 objects from an input image based on the energy map, the
841 saliency cut proposed in [41] is utilized.
842 Procedure 2 demonstrates the experimental procedure.
843 In particular, distinct parts of an object may be expressed
844 in different layers, and their information can be all inte-
845 grated into the Summation Energy Maps, which makes the
846 Summation Energy Maps suitable for the segmentation
847 task. On the other hand, the FSP-FR energy maps have the
848 property to highlight object boundaries. Thus, we acquire

849both these energy maps for the target objects in an input
850image and simply add them together as the final energy
851map, which is called as the Summation-FSP-FR energy
852map. Specially, for the overlapped objects, the pixels of the
853overlapped regions are simply determined by their energy
854values in the corresponding Summation-FSP-FR energy
855maps. It should be noted that the deconvolutional opera-
856tion in a CNN model in the back-propagation process will
857cause the offset in the energy map, which leads to the dila-
858tion around object edges. Thus, we regularize the Summa-
859tion-FSP-FR energy into the super-pixels generated by the
860method proposed in [42].

861Procedure 2.Weakly Supervised Semantic Segmentation

8621: Given a test image and a predicted label;
8632: Run FSP and obtain Summation Energy Map;
8643: Select one of the middle-level layers (e.g., “conv5_2”) as the
865target layer for FR, and get the FSP-FR energy map;
8664: Add Summation Energy Map and FSP-FR energy map to
867obtain Summation-FSP-FR energy map;
8685: use super-pixels [42] to refine the Summation-FSP-FR map.
8696: Run the saliency cut to get the segmentation results.

870The quantitative results on the over-all validation set are
871listed in Table 3. We compare the performance of our
872weakly supervised approach with several state-of-the-art
873approaches with the same experimental setup, i.e., using
874only images from Pascal VOC2012 and only image-level
875labels. The results reveal that our approach largely outper-
876forms previous techniques. Particularly, we achieve a 10.76
877percent higher mIOU score than the state-of-the-art
878approaches and update the best records of 16 classes of Pas-
879cal VOC2012. Fig. 15 illustrates some successful examples,
880where we find that even for very complex scenes, the pro-
881posed approach still works well. We also show some failure
882cases and their corresponding objects’ energy maps in
883Fig. 16. We observe that the energy maps are quite meaning-
884ful but the segmentation results are not satisfactory. The
885reason derives from the saliency cut [41], which implies that
886our approach has the potential to be further improved.

8874.6 Discussion

888The proposed Feedback CNN achieves good performance
889on both weakly supervised object localization and semantic
890segmentation. It is intuitive that, if all the target-relevant
891neurons in a classification neural network can be ideally

TABLE 2
Mean Accuracy (%) of Object Localization on the Test Set of
VOC2007 and Classification Validation Set of VOC2012

DICNN WeakSup Deconv ED EB Ours

VOC07 76.0 - 75.5 - 80.0 86.5
VOC12 - 65.3 64.7 73.4 78.6 82.7

Fig. 14. Visual comparison. The left side is the comparison of localization
score maps of themotorbike class between Deconv [10], WeakSup [27],
EB [30] and Feedback CNN. The right side shows more examples.
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892 selected when given an input image, the target objects can
893 be accurately localized and even segmented from the input
894 image based on the spatial and pattern information carried
895 by all the target-relevant neurons.
896 In Feedback CNN, most semantic patterns can be well
897 learned and expressed by the neurons in the basic classifica-
898 tion CNN, which is the most fundamental premise. And the
899 FSP algorithm can effectively select target-relevant neurons
900 when given an input image, which is the essential part of the
901 Feedback CNN. Due to the effectiveness of neuron selection,
902 the spatial information carried by the selected neurons is
903 able to be integrated into an energy map, i.e., the Summation
904 Energy Map. And the pattern information can be restored
905 and visualized by using the FR algorithm, which enables us
906 to reconstruct target objects. Based on these advantages, we
907 can obtain highly discriminative target-relevant energy
908 maps with good quality (e.g., complete objects with clear
909 boundaries). These are main reasons that the Feedback CNN
910 works well on object localization and segmentation.

911Another issue to be discussed is what happens if an irrel-
912evant class neuron is chosen as the target for an input image
913with objects of specific classes. In fact, given an input image,
914almost all the class nodes in common CNN models produce
915non-zero responses, which means that most class nodes can
916always find visual patterns from the input image that con-
917tribute to themselves. Therefore, when we set up an irrele-
918vant target for the input image, the feedback model will
919always find the corresponding neurons that contribute to
920the target. More precisely, the proposed feedback mecha-
921nism is able to infer what makes the CNN model produce a
922specific prediction, no matter the prediction is right or
923wrong, weak or strong.

9245 CONCLUSION

925In this paper, we proposed a novel Feedback CNN consist-
926ing of the pruning and recovering operations. Feedback
927CNN gives an effective approach to implement the selectiv-
928ity mechanism of neuron activation by jointly inferring the
929outputs of class nodes and activations of neurons in hidden
930layers. Feedback CNN is able to capture high-level semantic
931concepts and transform it into the image space to generate
932the energy maps. By embedding the feedback mechanism, a
933CNN that is only used for general object classification can
934be enhanced to accurately localize and segment the inter-
935ested objects in images. A large number of qualitative and
936quantitative experiments have verified the effectiveness of
937our Feedback CNN. The feedback mechanism is signifi-
938cantly important in both the human visual system and
939machine vision systems, and thus deserves more attention.
940In the future, we plan to further explore it, e.g., how neu-
941rons represent multiple object instances of the same cate-
942gory, which is critical for instance segmentation.
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