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Motivation
• Attention Models for Fine-Grained Recognition

– Extracting discriminative regions or parts for classification
– Constant computational complexity for high resolution images
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Motivation
• Attention Models for Fine-Grained Recognition

– Extracting discriminative regions or parts for classification
– Constant computational complexity for high resolution images

• How many attentions do we need to recognize the bird?



Different Inputs – Different Process Time
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The Recurrent Attention Model (RAM)



The Recurrent Attention Model (RAM)

ℎ"

#"



The Recurrent Attention Model (RAM)

ℎ"#$

%"#$%"

ℎ"



The Recurrent Attention Model (RAM)

ℎ"

#"

ℎ$

%$

ℎ$&'

%$&'



The Recurrent Attention Model (RAM)

ht = fh(ht−1,φ(x, lt−1), θh)

yt = argmax
y

P (y|fc(ht, θc))

lt ∼ π(l|fl(ht, θl))

1. Feature Extraction Module:

2. Attention Module:

3. Classification Module: ℎ"#$
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RAM as a Fixed Number of Iterations 
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Dynamic Computational Time for RAM
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Dynamic Computational Time for RAM
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ht = fh(ht−1,φ(x, lt−1), θh)

yt = argmax
y

P (y|fc(ht, θc))

lt ∼ π(l|fl(ht, θl))

at ∼ π(a|fa(ht, θa))

1. Feature Extraction Module:

2. Classification Module:

3. Attention Module:

4. Stopping Module:
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Training – With Ground Truth Class Labels



Training



Training (Policy Gradient)



More Formally

Use reward to replace loss:

Sample attention and stopping:

Discounted cumulative reward:

Intermediate supervision:



Discounted Reward for Early Stopping

Discounted cumulative reward:

• The discounted reward is designed for early stopping
• The discount factor    controls the trade-off between accuracy 

and computational complexity
!

Immediate reward:



Experiments: Fine-Grained Recognition



Experiments on MNIST
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DT-RAM-1, 1.46% error

DT-RAM-2, 1.12% error

• Image Resolution: 28x28, Crop Resolution: 8x8



Experiments on CUB-Birds and Cars
• Baseline: Residual Net 50 pre-trained on ImageNet
• Image Resolution: 512x512, Crop Resolution: 224x224
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Qualitative Results



Diagnostic Experiments (On CUB-Birds)
• Baseline: Residual Net 34 pre-trained on ImageNet
• Image Resolution: 256x256, Crop Resolution: 100x100



Diagnostic Experiments (On CUB-Birds)
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• Baseline: Residual Net 34 pre-trained on ImageNet
• Image Resolution: 256x256, Crop Resolution: 100x100



Diagnostic Experiments (On CUB-Birds)
• How does it compare against a fixed policy?
• Fixed policy: Stop if one class confidence is above threshold.



Diagnostic Experiments (On CUB-Birds)

How does Resolution and Depth affect:

How does Curriculum Learning affect:

How does Intermediate Supervision affect:
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• Residual net is a STRONG baseline for fine-grained
– On CUB-Bird 2011: 84.5%, On Stanford Cars: 92.3%
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– Car: 92.3% -> 93.1%



Take Home Message

• Residual net is a STRONG baseline for fine-grained
– On CUB-Bird 2011: 84.5%, On Stanford Cars: 92.3%

• Attention model reaches new state-of-the-art
– Bird: 84.5% -> 86.0% 
– Car: 92.3% -> 93.1%

• Dynamic Time seems a worth idea:
– DT-RAM: 1.9 steps ~ RAM: 3 steps



Take Home Message

• Carefully tuned Residual Net 
– Scale augmentation (~1.2% improve in ImageNet)
– Where to put ReLU and BN (~0.6% improved in CIFAR)
– Strided convolution(~0.3% improved in ImageNet)
– smoothing factor in BN (~0.2% improved in ImageNet)
– Color augmentation(slightly improved)
– Weight decay
Note : all improved base in resnet-50



Thank you!

• Code Available:
– https://github.com/baidu-research/DT-RAM
– Written in Torch

https://github.com/baidu-research/DT-RAM

